首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Infrared microwave double resonance signals have been observed for CH3OH using the 3.5-μm HeXe laser line. When microwave transitions in the ground vibrational state are pumped, the double resonance signals are obtained on two infrared transitions v = 1 ← 0 of νCH(a′); v = 1, J, K, μ = 4, 2, 1 ← v = 0, J, K, μ = 3, 2, 1, and 4, 3, 1 ← 3, 3, 1. Three weak double resonance signals are due to the collision-induced transitions. Their relative intensities have been explained successfully by using the rate constants of collision-induced transitions which are proportional to the dipole matrix elements between the states involved in the transitions.  相似文献   

2.
The far ir spectrum of arsine, AsH3, was recorded in the range 25–100 cm?1 with a resolution of approximately 0.004 cm?1. ΔJ = +1, ΔK = 0 rotational transitions were measured and assigned up to J″ = 12. These transitions, together with the presently available microwave and submillimeter-wave data and ground state combination differences, were analyzed on the basis of a rotational Hamiltonian which includes Δk = ±3 and Δk = ±6 interaction terms. The derived ground state molecular parameters reproduced the transition frequencies of both allowed and “perturbation allowed” transitions within the accuracy of the measurements. The equilibrium structure was determined for the AsH3 molecule.  相似文献   

3.
The J = 1 ← 0 and J = 2 ← 1 microwave rotational transitions of SiH3F and SiD3F have been measured for the ground and the v2 = 1, v3 = 1, v5 = 1, and v6 = 1 vibrational states, for which the various rotational and vibration-rotation interaction constants have been obtained. Both molecules show an X-Y Coriolis resonance between the ν2 and ν5 vibrational states, whose separation are 29 and 8 cm?1, respectively. In the case of SiD3F the resonance is very strong and an exact numerical diagonalization of the energy matrix was employed.  相似文献   

4.
Weak transitions of the type ΔJ = ± 1, ΔKa = ? 2, ΔKc = ± 3 have been observed in H2CO and D2CO by the millimeterwave double resonance method and also by direct absorption with a Stark modulated spectrometer. The addition of these new transitions in a least-squares analysis, in which all previously known microwave and millimeterwave data are also included, results in an improved set of rotational and distortion constants.  相似文献   

5.
Collisional satellite lines have been observed in fluorescence from nitrogen dioxide excited by the 4545-Å line of the argon laser. The 130,13 level of the (0, 8, 0) vibrational state is populated by the laser and undergoes collisionally induced transitions to the 110,11, 150,15, and 170,17 states. These collisionally populated states are identified by their fluorescence to the well-studied (0, 0, 0) and (0, 1, 0) levels of the ground electronic state. These satellite lines are also observed in fluorescence to the (0, 2, 0) and (0, 3, 0) vibrational levels of the ground electronic state. The wavenumbers of those lines, together with those from unrelaxed fluorescence and previously published microwave transitions, allow vibrational and rotational constants for the higher vibrational states to be determined more accurately than was previously possible. Several much weaker forbidden transitions have also been observed, including ΔKa = 0 through ?6 transitions in the (0, 8, 0)-(0, 0, 1) band.  相似文献   

6.
The infrared spectrum of gaseous cyclopropane has been measured in the regions 980–1080 and 1400–1500 cm?1, containing the ν10 and ν9E′ fundamental bands, respectively, using a high-resolution Fourier transform instrument. Deconvolution was used to enhance the resolution in the crowded parts of the spectrum to ~0.0020–0.0025 cm?1. Apart from the rotational l-resonance affecting mainly the low-K subbands, the ν9 band is strongly perturbed by Fermi resonance with the 2ν142 state lying ~41 cm?1 above. The effects of the Fermi resonance are most pronounced in the high-KΔK = +1 subbands as the 2ν14?2 levels would cross the ν9+ levels near K = 30. rR lines of 2ν14?2 for K = 24 to 36, enhanced by the resonance, have been identified in the region 1469–1475 cm?1 of the spectrum. Two extra perturbation-enhanced subbands are found adjacent to the K = 16?17 and K = 17?16 subbands of ν9: these have been ascribed to the K = 18?17 transitions in 2ν14?2 and to the K = 19?16 transitions in ν2140, respectively, as their upper states coincide with the corresponding levels ν9?(K = 16) and ν9+(K = 17). A combination of l-resonance and Fermi resonance is mainly responsible for the interactions causing the perturbations and appearance of the extra subbands, but a direct rotational interaction 〈ν9?(K)|h3|2ν14?2(K + 2)〉 also had to be introduced to accurately account for the observations. In contrast, the ν10 band is not appreciably perturbed by other states and merely exhibits effects of strong l-resonance in the low-K subbands, and K-doubling of the high-J lines of the K = 2–3 subband. A detailed analysis of the spectrum and of the perturbations is described and sets of accurate spectroscopic constants are reported for ν10 and ν9 as well as for the perturbing state 2ν142, which reproduce 3020 observed lines of the ν10 band with a standard deviation of 0.0008 cm?1 and 1810 lines of ν9 with a standard deviation of 0.0010 cm?1.  相似文献   

7.
The pure rotational spectrum of CH3CNO was measured in the frequency range 75 to 230 GHz. For the ground state, transitions were measured for J between 9 and 28 and for K from 0 to 12. In the v10 = 1 state the measurements range from J = 0 to 19 and from K = 0 to 11. Numerous perturbations are observed, apparently due to accidental resonances with levels in other vibrational states. The contributions due to ΔK = 2, Δl = 2 matrix elements (l-type resonance and l-type doubling) are accounted for by matrix diagonalization, and the effects due to accidental resonances are presented graphically.  相似文献   

8.
The Stark effect was observed for K = 0 and K = 1, J = 1 → 2 transitions in CF3CN. Measurements were made in a Stark modulated microwave spectrometer. The dipole moment obtained was μ = 1.262 ± 0.010 D. An analysis of the effects of electric field inhomogeneities on the observed Stark shifts for K = 0 and K = 1 states is included. Appropriate corrections are given for measuring linear Stark effects in a standard waveguide cell calibrated using a molecule with second-order Stark effect.  相似文献   

9.
The two lowest vibrational states of 35Cl35ClO2, v4=1 (A′) and v6=1 (A″), were investigated between 223 and 500 GHz. More than 250 rotational transitions were recorded with J and Ka up to 71 and 34, respectively. The spectra are heavily perturbed by strong c-type and weaker a-type Coriolis interactions. Near degeneracies of rotational levels of the two vibrational states having ΔJ=0, ΔKa=5 to 1, and ΔKaKc= odd cause moderate to severe perturbations in the rotational structure, preventing the states from being fit as isolated ones. Distortions in the hyperfine structure facilitated the assignment of rotational quantum numbers. Several resonantly interacting levels with ΔKa=5 to 2 were accessed, and a number of transitions between the states were observed. While resonant Coriolis interaction with ΔKa=1 occurs only at Ka>40, the effects of this interaction are so severe that nonresonant interaction considerably perturbs the highest KaQ-branches observed. The observed transitions could be fit to within experimental uncertainties employing the first-order Coriolis coupling constants fixed to those from the harmonic force field, sextic distortion constants fixed to those of the ground state, and some higher order Coriolis terms. The energy difference calculated from the fit agrees well with that obtained from the matrix-isolation infrared spectrum. Quadrupole coupling constants were determined for both Cl nuclei and both vibrational states.  相似文献   

10.
A global fit within experimental accuracy of microwave rotational transitions in the ground and first excited torsional states (vt = 0 and 1) of methylformate (HCOOCH3) is reported, which combines older measurements from the literature with new measurements from Kharkov. In this study the so-called ‘‘rho axis method’’ that treats simultaneously both A and E species of the ground and first excited torsional states is used. The final fit requires 55 parameters to achieve an overall unitless weighted standard deviation of 0.71 for a total of 10533 transitions (corresponding to 9298 measured lines) with rotational quantum numbers up to J ? 62 and Ka ? 26 in the ground state and J ? 35 and Ka ? 23 in the first excited torsional state. These results represent a significant improvement over past fitting attempts, providing for the first time a fit within experimental accuracy of both ground and first excited torsional states.  相似文献   

11.
The 3.51 μm HeXe laser is magnetically tuned over a wavenumber of 0.2 cm?1 and used for infrared absorption and double resonance spectroscopy. Eight rotation-vibration lines of propynal in the ν2 band are assigned by the Stark effect. Eleven microwave transitions in the v2 = 1 vibrational state are observed by the method of infrared-microwave double resonance. The rotational constants of the excited state and the band origin of the vibration ν2 are determined from the observed spectra.  相似文献   

12.
The far-infrared spectrum of phosphine, PH3, was recorded in the region between 30 and 200 cm−1 at a resolution of 0.002 cm−1. ΔJ = +1, ΔK = 0 rotational transitions in the ground state were measured and assigned up to J″ = 22 and K = 19. These transitions were analyzed together with the presently available microwave and submillimeter-wave data on the basis of different formulations of the rotational Hamiltonian, which included Δk = ±3 and/or Δk = ±6 interaction terms. An upper limit for the constant of the inversion splitting was obtained by fitting the same transitions to an appropriate inversion-rotational Hamiltonian. Rotational transitions in the v2 = 1 and v4 = 1 vibrational states were also observed.  相似文献   

13.
The infrared absorption of arsine, AsH3, between 750 and 1200 cm?1 has been recorded at a resolution of 0.006 cm?1. Altogether 2419 transitions, including nearly 700 “perturbation allowed” transitions with Δ∥k ? l∥ = ±3, ±6, and ±9, have been assigned to the ν2(A1) and ν4(E) bands. Splitting of the transitions for K″ = 3, 6, and 9 was also observed. To fit the rotational pattern of the v2 = 1 and v4 = 1 vibrational states up to J = 21, all the experimental data were analyzed simultaneously on the basis of a rovibrational Hamiltonian which took into account the Coriolis interaction between ν2 and ν4 and also included several essential resonances within them. The derived set of 38 significant spectroscopic parameters reproduced the 2328 transition wavenumbers retained in the final fit within the accuracy of the experimental measurements.  相似文献   

14.
Pure rotational transitions of a spherical top in a degenerate vibrational state have been observed directly for the first time with the help of pulsed microwave Fourier transform (MWFT) spectroscopy. Twelve rotational transitions in the v4 = 1 vibrational excited state of CD4 have been identified. The theoretical basis for the transition moments has been developed and the line strengths of the rotational transitions have been estimated. The measured rotational transition frequencies have been included in a reanalysis of the data from a previously recorded high-resolution FTIR spectrum of the ν2 and ν4 bands. The v4 = 1 state of CD4 is strongly coupled to the v2 = 1 state by Coriolis interaction. Thirty molecular parameters of the ν2ν4 dyad have been fitted finally from the combined microwave and infrared data. The microwave data are reproduced with a standard deviation of 42 kHz, and the infrared data with a standard deviation of 0.0002 cm?1; in each case, this is close to the estimated experimental prescision.  相似文献   

15.
Antimony dimers in the vapor phase were studied by the technique of laser-induced fluorescence. In addition, collision-induced rotational transitions were observed. Two new states labeled K and K′ were identified in the 32 000-cm?1 region, for one of them the vibrational and rotational constants could be determined. A spectroscopic analysis was also performed for the BX system.  相似文献   

16.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been used for observation of the “forbidden” transitions JJ, K = ±4 → ±1 and JJ, K = ±5 → ±2 in AsH3. A comprehensive computer analysis was made of the frequencies measured in this work together with available microwave frequencies of other transitions. This analysis provides accurate values of the rotational constants, nuclear quadrupole couplings, and effective structural parameters of the molecule. The spectral constants B0 and C0 (in MHz) are 112 470.597 and 104 884.665, respectively.  相似文献   

17.
The microwave spectrum of SiF2 was identified in the excited states of the stretching vibrations. It was found that the Coriolis resonance between the v1 = 1 and v3 = 1 vibrational states has perturbed very much the spectra of these states. An extensive analysis of the Coriolis resonance gave a very accurate value of the difference between the ν1 and ν3 fundamental frequencies, ν1 - ν3 = ? 15.395 ± 0.001 cm?1 and, thus, gave a strong basis to the assignment of the stretching modes by Khanna et al. An intervibrational-state transition, v1 = 1, 854v3 = 1, 817 was identified.The observed rotational constants in the v1 = 1 and v3 = 1 states were combined with those in the ground and v2 = 1 states by Rao and Curl to obtain the equilibrium structure, harmonic force constants and complete sets of the cubic and the third-order potential constants.  相似文献   

18.
The ν6(E) fundamental vibration-rotation band of monodeuteromethane (12CH3D) has been recorded in the spectral range 1033–1270 cm?1 with a resolution of approximately 0.04 cm?1. Of the 669 transitions with J′ ≤ 17 identified, 633 have been retained for the determination of the rotational levels in the upper state v6 = 1. The Coriolis interaction between the v6 = 1(E) and v3 = 1 (A1) vibrational states of 12CH3D results in large A1A2 splittings of levels with v6 = 1 and |K ? l6| = 0 or 3; the mixing in K and l6 also gives rise to some ten forbidden transitions observed in the spectra. These effects have been very well explained within the formulation based on the contact transformation method. Values of 15 molecular structure constants of the v6 = 1 state have been determined from a least-squares analysis of the 633 retained transitions. These constants can be used to estimate values of the upper-state energies up to fourth order, and through them the spectral positions of the 633 retained transitions are reproduced with an overall standard deviation of 0.013 cm?1, which is within experimental uncertainties.  相似文献   

19.
The microwave spectra of the isotopic species K13CN and KC15N have been investigated by molecular beam electric resonance spectroscopy, using the seeded beam technique. For both isotopic species about 20 rotational transitions originating in the ground vibrational state were observed in the frequency range 9–38 GHz. The observed transitions were fitted to an asymmetric rotor model to determine the three rotational, as well as the five quartic and three sextic centrifugal distortion constants. The hyperfine spectrum of KCN has been unravelled with the help of microwave-microwave double-resonance techniques. One hundred and forty hyperfine transitions in 11 rotational transitions have been assigned. The hyperfine structures of K13CN and KC15N were also studied. For all three isotopic species the quadrupole coupling constants and some spin-rotation coupling constants could be deduced. The rotational constants of the 13C and 15N isotopically substituted species of potassium cyanide, combined with those of the normal isotopic species (determined more accurately in this work), allowed an accurate and unambiguous evaluation of the structure, which was confirmed to be T shaped. Both the effective structure of the ground vibrational state and the substitution structure were evaluated. The results for the effective structural parameters are rCN = 1.169(3) A?, rKC = 2.716(9) A?, and rKN = 2.549(9) A?. The values obtained for the principal hyperfine coupling constant eQqz(N), the angle between the CN axis and zN, and the bond length rCN indicate that in gaseous potassium cyanide the CN group can be considered as an almost unperturbed CN? ion.  相似文献   

20.
The microwave spectrum of 2,8,9-trioxaadamantane has been investigated in the region from 12.4 to 26.5 GHz. The observed spectrum exhibited the expected symmetric top pattern, with the rotational constant B0 = 1848.64 MHz. Numerous weaker lines were observed and were attributed to vibrational satellites of the main rotational transition. The transitions from J = 3 → 4 through J = 6 → 7 were studied and no centrifugal distortion effects were observed.A structure is derived that is consistent with the observed rotational constants of the normal and one isotopic species by use of the method of diagnostic-least-squares.The second order stark effect for the K = 0 state yielded a dipole moment of 3.01 ± 0.03 D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号