首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Raman (3200—10cm−1) and infrared (3200—50 cm−1) spectra of gaseous and solid 1-chloro-2-methylpropane and 1-bromo-methylpropane, as well as the Raman spectra of the liquids, have been recorded and assigned. The gauche asymmetric torsion of the 1-chloro-2-methylpropane molecules has been observed at 110 cm−1 in the Raman spectrum of the gas. For the 1-bromo-2-methylpropane molecule, both the trans and gauche asymmetric torsions have been observed at 106.70 and 103.94 cm−1, respectively, along with three additional transitions for the gauche conformer. From these data, the asymmetric potential function for the bromide molecules to V1 = —493 ±16, V2 = 595 ± 18, and V3 = 2006 ± 6 cm−1 with the trans conformer being more stable than the gauche conformer by 44 ± 20 cm−1. The trans form is found experimentally to be more stable in the liquid phase by 30 ± 14 cm−1 (83 ± 40 cal mol−1). From the relative intensities, in the Raman spectra, of the CCl stretches measured as a function of temperature, the gauche conformer of the chloride molecules to be 167 ± 71 cm−1 (479 ± 203 cal mol−1) more stable than the trans conformer in the gas phase, and 73 ± 10 cm−1 (208 ± 29 cal mol−1) more stable in the liquid phase. The methyl torsions for the gauche and trans conformers of both molecules are tentatively assigned in the gas phase and the barriers have been calculated. The results of this study are compared with previous studies on these molecules.  相似文献   

2.
The Raman (3100–10 cm−1) and infrared (3100–30 cm−1) spectra of difluoroacetyl chloride, CHF2CClO, in the gas and solid phases have been recorded. Additionally, the Raman spectrum of the liquid with qualitative depolarization ratios has been obtained. From these data, a trans/gauche equilibrium is proposed in the gas and liquid phases, with the trans conformer (hydrogen atom eclipsing the oxygen atom and trans to the chlorine atom) the more stable form in the gas, but the gauche rotamer is more stable in the liquid and is the only form present in the annealed solid. From the study of the Raman spectrum of the gas at different temperatures, a value of 272 ± 115 cm−1 (778 ± 329 cal mol−1) was determined for ΔH, with the trans conformer the more stable form. Similar studies were carried out on the liquid and a value of 109 ± 9 cm−1 (312 ± 26 cal mol−1) was obtained for ΔH, but now the gauche conformer is the more stable form. A potential function for the conformational interchange has been determined with the following potential constants: V1 = 397 ± 23, V2 = −101 ± 5, V3 = 474 ± 3, V4 = −50 ± 3, and V6 = 10 ± 2 cm−1. This potential has the trans rotamer more stable by 179 ± 31 cm−1 (512 ± 89 cal mol−1) than the gauche conformer. A complete vibrational assignment is proposed for both conformers based on infrared band contours, Raman depolarization data, group frequencies and normal coordinate calculations. The experimental conformational stability, barriers to internal rotation, and fundamental vibrational frequencies are compared with those obtained from ab initio Hartree-Fock gradient calculations employing both the RHF/3-21G* and RHF/6-31G* basis sets, and to the corresponding quantities obtained for some similar molecules.  相似文献   

3.
The IR spectra (50–4000 cm?1) of gaseous and solid cyclobutylamine and cyclobutylamine-N-d2 and the Raman spectra (25–4000 cm?1) of gaseous, liquid and solid cyclobutylamine and cyclobutylamine-N-d2 have been recorded. Depolarization values were measured for both the gaseous and liquid states. Most of the thirty-six fundamental vibrations have been assigned and support for more than one molecular configuration is presented. In the low frequency region for the “light” compound, a series of four Q-branches have been assigned to transitions between energy levels of the ring-puckering vibration for the equatorial isomer. The transitional frequencies were fitted to an asymmetric single-minimum potential function of the form: V(X) = 0.474 × 106X4 - 0.204 × 105X2 + 0.993 × 105X3 with a reduced mass of 160 amu. The following torsional potential constants were determined for the “light” molecule- V1 = 77.8 ± 17.0 cm?1, V3 = 784.0 ± 3.3 cm?1. The trans conformation was found to be more stable than the gauche form by approximately 58 cm?1 (0.17 kcal mol?1). The barriers to trans-gauche, gauche-trans, and gauche-gauche interconversion are 803, 745 and 803 cm?1, respectively.  相似文献   

4.
The far-infrared spectra of gaseous and solid ethyl nitrate, CH3CH2ONO2, have been recorded from 500 to 50 cm−1. The fundamental asymmetric torsion of the trans conformer which has a heavy atom plane has been observed at 112.50 cm−1 with two excited states failing to lower frequencies, and the corresponding fundamental torsion of the gauche conformer was observed at 109.62 cm−1 with two excited states also falling to lower frequencies. The results of a variable temperature Raman study indicate that the trans conformer is more stable than the gauche conformer by 328 ± 96 cm−1 (938 ± 275 cal mol−1). An asymmetric potential function governing the internal rotation about the CH2O bond is reported which gives a trans to gauche barrier of 894 ± 15 cm−1 (2.56 ± 0.04 kcal mol−1) and a gauche to gauche barrier of 3063 ± 68 cm−1 (8.76 ± 0.20 kcal mol−1) with the trans conformer more stable by 220 ± 148 cm−1 (0.63 ± 0.42 kcal mol−1). Transitions arising from the symmetric CH3 and NO2 torsions are observed for both conformers, from which the threefold and twofold periodic barriers to internal rotation have been calculated. For the trans conformer the values are 1002 cm−1 (2.87 kcal mol−1) and 2355 ± 145 cm−1 (6.73 ± 0.42 kcal mol−1) and for the gauche conformer they are 981 cm−1 (2.81 kcal mol−1) and 2736 ± 632 cm−1 (7.82 ± 1.81 kcal mol−1) for the CH3 and NO2 rotors, respectively. These results are compared to the corresponding quantities for some similar molecules.  相似文献   

5.
The i.r. (4000-40 cm−1) and Raman (4000-10 cm−1) spectra of gaseous, liquid and solid methoxy difluorophosphinoxide, CH3OP(O)F2, and the deuterated analog have been recorded. Results obtained from variable solvent and matrix isolation studies are consistent with the existence of both trans (CO bond trans to the PO bond) and gauche (dihedral angle approximately 120° from the trans form) conformers in the fluid phases. From simulations of observed gas phase i.r. band profiles, it was possible for assignments to be made to the individual conformers for a number of the fundamentals. Variable temperature studies carried out for the gaseous and liquid phases give energy differences between the gauche and trans conformers of 451 ± 100 cm−1 (1.29 ± 0.3 kcal/mol) and 69 ± 20 cm−1 (197 ± 57 cal/mol), respectively. Furthermore, these data are consistent with the gauche form being the thermodynamically preferred conformer for the gas phase whereas the trans conformer is preferred in the liquid phase and the only conformer present in the annealed solid. The methoxy torsional mode of the gauche conformer has been assigned to a very strong band observed in the far i.r. spectrum of the gas phase at 42 cm−1. The matrix isolation spectra of the normal compound in Ar, CO and N2 matrices indicated no changes in the conformational equilibrium among these different matrices and this equilibrium remains unchanged upon annealing the matrices.  相似文献   

6.
The far-IR spectrum from 375 to 30 cm−1 of gaseous 3-chloro-2-methylpropene, CH2=C(CH3)CH2Cl, has been recorded at a resolution of 0.10 cm−1. The fundamental asymmetric torsional mode for the gauche conformer is observed at 84.3 cm−1 with three excited states falling to lower frequency. For the higher energy s-cis conformer, where the chlorine atom eclipses the double bond, the asymmetric torsion is observed at 81.3 cm−1 with two excited states falling to lower frequency. Utilizing the s-cis and gauche torsional frequencies, the gauche dihedral angle and the enthalpy difference between conformers, the potential function governing the interconversion of the rotamers has been calculated. The determined potential function coefficients are (in reciprocal centimeters): V1=189±12, V2=−358±11, V3=886±2 and V4=−12±2 with an enthalpy difference between the more stable gauche and s-cis conformers of 150 ±25 cm−1 (430 ± 71 cal mol−1). This function gives values of 661 cm−1 (1.89 kcal mol−1), 1226 cm−1 (3.51 kcal mol−1) and 812 cm−1 (2.32 kcal mol−1), for the s-cis to gauche, gauche to gauche, and gauche to s-cis barriers, respectively. From the methyl torsional frequency of 170 cm−1 for the gauche conformer, the threefold barrier of 678 cm−1 (1.94 kcal mol−1) has been calculated. The asymmetric potential function, conformational energy difference and optimized geometries of both conformers have also been obtained from ab initio calculations with both the 3–21G* and 6–31G* basis sets. A normal-coordinate analysis has also been performed with a force field determined from the 3–21G* basis set. These data are compared with the corresponding data for some similar molecules.  相似文献   

7.
The microwave spectrum of trans-1-fluoro-2-butene, trans-(CH3)HCCH(CH2F), has been recorded in the region of 18.0–39.0 GHz. Both a-type R- and b-type Q-branch assignments have been made for the ground and first two vibrationally excited states of the asymmetric torsion for the gauche (anticlinal) conformer. The ground state rotational constants for this conformer are found to have the following values: A = 19,938.33±0.48, B = 2071.37±0.01, C = 2022.17±0.01 MHz. From an analysis of the internal rotational splittings of the Q-branches, the three-fold rotational barrier for the methyl group is determined to be 596±7 cm−1 (1.70±0.02 kcal/mol). From the Stark effect the dipole moment components for the gauche conformer were determined to be |μa| = 1.86±0.01, |μb| = 1.16±0.01, |μc| = 0.31±0.05, and |μt = 2.21±0.01 D. The fundamental asymmetric torsion for the cis (synclinal) conformer has been observed in the far-IR spectrum of the vapor at 123.95 cm−1 whereas that for the gauche conformer has been determined to occur at 82.8±5 cm−1 based on relative intensity measurements obtained from the microwave spectrum. From these data the potential function which governs the internal rotation of the asymmetric top has been determined and the following potential constants have been evaluated: V1 = −191±10, V2 = 598±10, V3 = 786±13, V4 = 59±5, and V6 = 79±5 cm−1. These data are consistent with the more stable conformer having the fluorine atom cis (synclinal) to the double bond and lying 300±33 cm−1 (858±94 cal/mol) lower in energy than the gauche rotamer. Utilizing ab initio calculations with the MP2/6-31G* basis set and the three rotational constants, r0 structural parameters are estimated. Also, the barriers to conformer interconversion have been calculated with the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets. All of these results have been compared to the similar quantities of some corresponding molecules.  相似文献   

8.
9.
The infrared (3500 to 40 cm−1) and Raman (3500 to 10 cm−1) spectra have been recorded for the gaseous and solid phases of ethyldichlorophosphine, CH3CH2PCl2, and CD3CD2PCl2. Additionally, the Raman spectra of the liquids were recorded and qualitative depolarization values were obtained. In the spectrum of the gas the gauche conformer is predominant with about 65% abundance whereas in the spectrum of the liquid at ambient temperature the amount of gauche conformer is reduced compared to the gas phase and at −100°C the trans conformer predominates. The trans conformer is the more stable species in the solid. A variable temperature study was carried out on the Raman spectrum of the liquid and ΔH and ΔS values of 190 ± 30 cm−1 (543 ± 87 cal/mol) and 2.86 ± 0.3 eu were determined, respectively, with the trans conformer being more stable. Similar variable temperature studies have been carried out on a number of conformer peaks in the infrared spectrum of the gas and a ΔH value of 53 ± 38 cm−1 (152 ± 110 cal/mol) was obtained, again with the trans conformer being more stable. All the fundamental modes of both conformers have been assigned utilizing band contours, depolarization values, isotopic shift factors and group frequencies. A normal coordinate calculation has been carried out utilizing a modified valence force field to calculate the frequencies and potential energy distribution for both conformers. The barriers to methyl rotation of the trans and gauche conformers are 2.2 ± 0.1 and 2.3 ± 0.1 kcal/mol, respectively. These results are compared to similar quantities for some corresponding molecules.  相似文献   

10.
The Raman spectra (3200–10 cm−1) of ethyl methyl selenide in the gas, liquid and solid phases and the infrared spectra (3200–30 cm−1) of the gas and solid have been recorded. Qualitative depolarization ratios have been obtained for the lines in the Raman spectrum of the liquid. By a variable temperature Raman study of the liquid, it has been determined that the gauche conformer is more stable than the trans rotamer by 158±16 cm−1 (452±46 cal mol−1), and the gauche conformer is the rotamer present in the solid. A complete vibrational assignment for the gauche conformer is presented. All of these data are compared to the corresponding quantities obtained from ab initio Hartree—Fock gradient calculations employing the STO-3G* and 4–31G*/MIDI-4* basis sets. Complete equilibrium geometries have been calculated for both rotamers and the results are discussed and compared with the corresponding quantities for some similar molecules.  相似文献   

11.
The vicinal coupling constant, J(12), between the vinyl CH and the ring CH protons in vinylcyclohexane was calculated from a ‘partial molecule’ six-spin system. The 100 and 270 MHz results are in good agreement; those at 60 MHz were, however, still inaccurate in this approximation. J(12) increases with increasing solvent polarity and decreasing temperature. The energy difference between the s-trans and gauche conformers in both C2Cl4 and perdeuterioacetone solvents is 879 ± 167 J mol?1 (210±40 cal mole?1). The s-trans conformer is the most stable, in contrast to the isoelectronic cyclohexylcarboxyaldehyde where the gauche rotamers are lower in energy.  相似文献   

12.
The determination of the enthalpy ΔH and entropy ΔS of the isomerization bicyclopropy l(trans)? bicyclopropyl(gauche) in the liquid phase by the IR intensity method is described. It is assumed that the ratio of the integral absorption coefficients of the two reference bands at 1351 cm?1 (gauche) and 1291 cm?1 (trans), which both belong to the same type of vibration, is temperature independent. The two values ΔH = ?160 ± 40 cal Mol?1 and ΔS = ?0.4 ± 0.5 cal (Mol · Grad)?1 respectively. ΔSU = ?1.8 ± 0.5 cal (Mol · Grad)?1 thus determined agree well with the corresponding results obtained from NMR and electron diffraction measurements. However, from the pair of reference bands at 695 cm?1 (gauche) and 1291 cm?1 (trans), which do not belong to the same type of vibration, strongly differing values for ΔH and ΔSresult under the same assumption as above, which apparently is not applicable in this case.It is shown through these data that the “Fateley-Test” does not provide a suitable tool to decide whether the absorption coefficients of the reference bands are temperature independent or not. The reason for this insignificance is the relatively poor accuracy and reproducibility of measured IR band intensities obtainable up to now.The relative density of bicyclopropyl between ?60°C and + 50°C was determined.  相似文献   

13.
The far i.r. spectrum of gaseous n-butane obtained at 0.06 cm−1 resolution is reported between 80 and 230 cm−1. Several transitions for the asymmetric torsion of the trans conformer have been identified. Utilizing these data along with the previously reported asymmetric torsional transitions of the gauche conformer from Raman spectroscopic data, the potential function for the conformational change has been obtained. The determined potential parameters were found to be: V1 = 181, V2 = 148, V3 = 1154 and V6 = −33 cm−1. The s-trans to gauche, gauche to gauche, and gauche to s-trans barriers in cm−1 were found to be: 1315 (3.76 kcal/mol), 1090 (3.12 kcal/mol) and 1070 (3.06 kcal/mol), respectively. The potential functions obtained from these spectroscopic data are consistent with the trans to gauche energy difference, but not with the high trans/cis potential barrier suggested by recent ab initio calculations.  相似文献   

14.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid chloroacetone (1-chloro-2-propanone), CH2ClC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in a gauche conformation having a “near cis” structure of C1 symmetry (dih ClCCO=142°C) in the vapor but for the liquid a second conformer having a trans structure (chlorine atom oriented trans to the methyl group) with Cs point group symmetry is present. From a study of the Raman spectrum of the liquid at variable temperatures, the trans conformation has been determined to be more stable than the gauche form by 1042±203 cm−1 (2.98±0.6 kcal mol−1 and is the only conformer present in the spectrum of the annealed solid. From ab initio calculations at the 3-21G* and 6-31G* basis set levels optimized geometries for both the gauche and trans conformers have been obtained and the potential surfaces governing internal rotation of the symmetric and asymmetric rotors have been obtained. The observed vibrational frequencies and assignments to the fundamental vibrations for both the gauche and trans conformers are compared to those calculated with the 3-21G* basis set. The results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

15.
Infrared and Raman spectra of methyl methylsilyl sulphide are measured for the liquid and solid states. The fundamental vibrations are assigned and the normal vibrations calculated for two possible rotational isomers about the Si-S bond. Two different solid spectra are obtained, one corresponding to the trans form and the other to the gauche form; the liquid spectrum shows the presence of both forms. The gauche form is more stable than the trans form in the liquid state by 80 ± 50 cal mol?1. The crystallization process indicates that the freezing and melting points of the trans form are slightly higher than those of the gauche form.  相似文献   

16.
A normal coordinate analysis was carried out based on the force field of Schachtschneider and Snyder in order to calculate all amplitudes of vibration and shrinkage corrections for n-butane. The results are tabulated to aid diffraction analyses of related substances. A vapor-phase electron diffraction reinvestigation of n-butane led to experimental measurements of the principal amplitudes of vibration and to the following molecular parameters (± 3σ ): rg(C-C) = 1.531(2)Å, rg(C-H)= 1.117(5)Å, ∠CCC (trans. gauche average) = 113.8(4)°, ∠CCH (ave) = 111.0(5)° , gauche CCCC dihedral angle 65(6)°, % trans conformer = 54 ± 9%, and ΔG° (gauche— trans) = 497 ± 220 cal mol?1.  相似文献   

17.
The IR (50–3500 cm?1) and Raman (20–3500 cm?1) spectra have been recorded for gaseous and solid dimethylethylamine. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. Due to the fact that three distinct Raman lines disappear on going from the fluid phases to the solid state, it is concluded that the molecule exists as a mixture of the gauche and trans conformers in the fluid phases with the gauche conformer being more stable and the only one present in the spectra of the unannealed solid. From the temperature study of the Raman spectrum of the liquid a rough estimate of 3.9 kcal mol?1 has been obtained for ΔH. Relying mainly on group frequencies and relative intensities of the IR and Raman lines, a complete vibrational assignment is proposed for the gauche conformer. The potential functions for the three methyl rotors have been obtained, and the barriers to internal rotation for the two CH3 rotors attached to the nitrogen atom have been calculated to be 3.51 and 3.43 kcal mol?1, whereas the barrier for the CH3 rotor of the ethyl group has been calculated to be 3.71 kcal mol?1. The asymmetric torsional mode for the gauche conformer has been observed in both the IR and Raman spectra of the gas at 105 cm?1 with at least one hot band at a lower frequency. Since the corresponding mode has not been observed for the trans conformer, it is not possible to obtain the potential function for the asymmetric rotation although estimates on the magnitudes of some of the terms have been made. Significant changes occur in the low-frequency IR and Raman spectra of the solid with repeated annealing; several possible reasons for these changes are discussed and one possible explanation is that a conformational change is taking place in the solid where the trans form is stabilized by crystal packing forces. These results are compared to the corresponding quantities for some similar amines.  相似文献   

18.
F.G. Riddell 《Tetrahedron》1975,31(6):523-525
The synthesis of 2,5-dimethyltetrahydro-1,2-oxazine via 5-methyldihydro-1,2-oxazine and the preparation of a pure sample of 2,4-dimethyltetrahydro-1,2-oxazine are reported. For the 2,5-dimethyl derivative low temperature (?40° to ?45°) 1H NMR measurements show signals from the trans (95%) and cis (5%) conformations. From this result it follows that an axial 5-Me group in a tetrahydro-1,2-oxazine ring is 5·7 ± 0·4 kJ mole?1 less stable than when equatorial. Low temperature measurements on the 2,4-dimethyl derivative fail to show any sign of the conformation with an axial Me group. These results in conjunction with earlier relative free energy difference measurements, give the following conformational free energy differences for Me groups on ring C atoms; C(4) 7·1 ± 1·0; C(3) 7·9 ± 0·8; C(6) 10·1 ± 1·6 kJ mole?1.  相似文献   

19.
The infrared (3500-20 cm−1) and Raman (3200-10 cm−1) spectra have been recorded for gaseous and solid fluoroacetone (1-fluoro-2-propanone), CH2FC(O)CH3. Additionally, the Raman spectrum of the liquid has been recorded and qualitative depolarization values have been obtained. These data have been interpreted on the basis that the molecule exists predominantly in the cis (fluorine atom oriented cis to the methyl group) conformation in the vapor but for the liquid a second conformer having a trans orientation (fluorine atom oriented trans to the methyl group) is present. From a study of the Raman spectrum of the liquid at variable temperatures the trans conformation has been determined to be more stable than the cis form by 416 ± 54 cm−1 (1.19 ± 0.15 kcal mol−1) and is the only conformation present in the spectrum of the annealed solid. The asymmetric torsional fundamental for the more stable cis conformer has been observed in the far infrared spectrum of the gas at 69.6 cm−1 with six accompanying hot band transitions proceeding to lower frequency. The corresponding mode for the high energy trans conformer is extensively overlapped but is distinguishable at ∼65 cm−1. From these data the asymmetric torsional potential function governing internal rotation about the CC bond has been determined and the potential coefficients are: V1 = 675 ± 2, V2 = 991 ± 5, V3 = 74 ± 1 and V4 = 54 ± 2 cm−1. The cis to trans and trans to cis barriers are 1332 ± 5 and 731 ± 5 cm−1, respectively, with an enthalpy difference of 601 ± 8 cm−1 (1.72 ± 0.02 kcal mol−1). From ab initio calculations at the 3-21G and 6-31G* basis set levels optimized geometries for both the cis and trans conformers have been obtained and the potential surface governing internal rotation of the asymmetric top determined. The observed vibrational frequencies with their assignments for both the cis and trans conformers are compared to those from the ab initio calculations. All of these results are compared to the corresponding quantities for some similar molecules.  相似文献   

20.
The microwave spectrum of cyclobutylisocyanate, c-C4H7NCO, has been investigated from 21,000 to 11,000 MHz and 11 transitions for the more stable equatorial-trans conformer were assigned. The rotational constants of the ground vibrational state have been determined and the molecule has been shown to be a near symmetric prolate rotor (К = ?0.99). The B and C rotational constants have been confidently determined to be B = 1508.68(3) and C = 1476.55(2) MHz, respectively, whereas the value for the A rotational constant of 6,891(302) MHz had a large uncertainty. Variable temperature (?100 to ?55 °C) studies of the infrared spectra (3,500–400 cm?1) of cyclobutylisocyanate dissolved in liquid xenon as well as the infrared spectra of the gas and solid have been recorded. In addition, the Raman spectra (3,600–100 cm?1) of the liquid have been investigated. These spectral data indicated the present of three conformers in the fluid states which are the equatorial-trans, equatorial-gauche, and axial-trans forms. The second part of the conformational name refers to the relative position of the NCO moiety relative to the alpha hydrogen. By utilizing four conformer pairs, an enthalpy difference of 131 ± 13 cm?1 (1.57 ± 0.16 kJ/mol) was obtained with the equatorial-trans conformer the more stable form, which is in good agreement with the ab initio predicted value of 137 ± 36 cm?1 (1.64 ± 0.43 kJ/mol). To aid in the vibrational assignment, ab initio and DFT calculations have been carried out by using a variety of basis sets up to 6-311G(3df,3pd).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号