首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ON THE SECOND ORDER WAVE DIFFRACTION IN TWO LAYER FLUIDSWuJianhua(吴建华);FangYing(方颖)(ReceivedMay4,1995;ResivedJun.21,1996;Comm...  相似文献   

2.
The basic formulas of classical equilibrium statistical mechanics are derived from well-known theorems in measure theory and ergodic theory. The method used is a generalization of the methods of Khinchin and Grad and deals with several, in fact a “complete set”, of “invariants” or “integrals of the motion”. Most of the results are simple corollaries of Birkhoff's ergodic theorem, and since time-averages are used, the whole approach is characterized by an absence of statistical “ensembles” and probability notions. In the course of the development a “generalized temperature” is introduced, and a generalization of the second law of thermodynamics is derived. Formulas for the “microcanonical”, “canonical”, and “grand canonical” distributions appear as special cases of the general theory.  相似文献   

3.
D. Rochette 《Shock Waves》2007,17(1-2):103-112
The paper deals with the numerical method of the compressible gas flow through a porous filter emphasizing the treatment of the interface between a pure gaseous phase and a solid phase. An incident shock wave is initiated in the gaseous phase interacting with a porous filter inducing a transmitted and a reflected wave. To take into account the discontinuity jump in the porosity between the gaseous phase and the porous filter, an approximate Riemann solver is used to compute homogeneous non-conservative Euler equations in porous media using ideal gas state law. The discretization of this problem is based on a finite volume method where the fluxes are evaluated by a “volumes finis Roe” (VFRoe) scheme. A stationary solution is determined with a continuous variable porosity in order to test the numerical scheme. Numerical results are compared with the two-phase shock tube experiments and simulations of a shock wave attenuation and gas filtration in porous filters are presented.   相似文献   

4.
A complete semi-analytical solution is obtained for second-order diffraction of plane bichromatic waves by a fixed truncated circular column. The fluid domain is divided into interior and exterior regions. In the exterior region, the second-order velocity potential is expressed in terms of ‘locked-wave’ and ‘free-wave’ components, both are solved using Fourier and eigenfunction expansions. The resulting ‘locked wave’ potential is expressed by one-dimensional Green's integrals with oscillating integrands. In order to increase computational efficiency, the far-field part of the integrals are carried out analytically. Solutions in both regions are matched on the interface by the potential and its normal derivative continuity conditions. Based on the present approach, the sum-and difference-frequency potentials are efficiently evaluated and are used to generate the quadratic transfer functions which correlates sum-frequency QTFs for a TLP column are present, which are compared for some frequency pairs with those from a fully numerical procedure. Satisfactory agreement has been obtained. QTF spectra for a case study TLP column, generated using the semi-analytical solution are presented. Also given are the results for nonlinear wave field around the column.  相似文献   

5.
The propagation and interaction of hyperelastic cylindrical waves are studied. Nonlinearity is introduced by means of the Murnaghan potential and corresponds to the quadratic nonlinearity of all basic relationships. To analyze wave propagation, an asymptotic representation of the Hankel function of the first order and first kind is used. The second-order analytical solution of the nonlinear wave equation is similar to that for a plane longitudinal wave and is the sum of the first and second harmonics, with the difference that the amplitudes of cylindrical harmonics decrease with the distance traveled by the wave. A primary computer analysis of the distortion of the initial wave profile is carried out for six classical hyperelastic materials. The transformation of the first harmonic of a cylindrical wave into the second one is demonstrated numerically. Three ways of allowing for nonlinearities are compared __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 7, pp. 73–82, July 2005.  相似文献   

6.
This paper deals with vibrations of an infinite plate in contact with an acoustic medium where the plate is subjected to a point excitation by an electric motor of limited power-supply. The whole system is divided into two “exciter - foundation” and “foundation-plate-medium”. In the system “motor-foundation” three classes of steady state regimes are determined: stationary, periodic and chaotic. The vibrations of the plate and the pressure in the acoustic fluid are described for each of these regimes of excitation. For the first class they are periodic functions of time, for the second they are modulated periodic functions, in general with an infinite number of carrying frequencies, the difference between which is constant. For the last class they correspond to chaotic functions. In another mathematical model where the exciter stands directly on an infinite plate (without foundation) it was shown that chaos might occur in the system due to the feedback influence of waves in the infinite hydro-elastic subsystem in the regime of motor shaft rotation. In this case the process of rotation can be approximately described as a solution of the fourth order nonlinear differential equation and may have the same three classes of steady state regimes as the first model. That is the electric motor may generate periodic acoustic waves, modulated waves with an infinite number of frequencies or chaotic acoustic waves in a fluid.  相似文献   

7.
A new finite-element based method of calculating non-linear wave loads on offshore structures in extreme seas is presented in this paper. The diffraction wave field is modelled using Stokes wave theory developed to second order. Wave loads and free surface elevations are obtained for fixed surface-piercing structures by solving a boundary value problem for the second-order velocity potential. Special attention has been given to the radiation condition for the second-order diffraction field. Results are presented for three test examples, the vertical cylinders of Kim and Yue and of Chakrabarti, and an elliptic cylinder. These results demonstrate that early problems with the application of second-order theory arising from inadequate radiation conditions have been overcome.  相似文献   

8.
The mechanical model was established for the anti-plane fracture problem of a functionally graded coating–substrate system with a coating crack inclined to the weak/micro-discontinuous interface. The Cauchy singular integral equation for the crack was derived using Fourier integral transform, and the Lobatto–Chebyshev collocation method put up by Erdogan and Gupta was used to get its numerical solution. Finally, the effects of the weak/micro-discontinuity of the interface on SIFs were analyzed, the “affected regions” corresponding to the two crack tips have been obtained and their engineering significance was discussed. It was indicated that, for the crack tip in the corresponding “affected region”, to reduce the weak-discontinuity of the interface and to make the interface micro-discontinuous are the two effective ways to reduce the SIF, and the latter way always has more remarkable SIF-reduction effect. For the crack tip outside the “affected region”, its SIF is mainly influenced by material stiffness, and to prevent such a tip from growing toward the interface “softer coating and stiffer substrate” is a more advantageous combination than “stiffer coating and softer substrate”.  相似文献   

9.
ANANALYTICALSOLUTIONOFSECOND-ORDERWAVEFORCEONAVERTICALCIRCULARCYLINDERZhouZhi-li(邹志利)(DalianUniversityofTechnology,Dalian)Dai...  相似文献   

10.
G. Ben-Dor 《Shock Waves》2006,15(3-4):277-294
The distinguished philosopher Ernst Mach published the first known paper on the phenomenon of planar shock-wave reflections over straight wedges over 125 years ago in 1878. In his publication he presented two wave configurations that could result from this reflection process, a regular reflection (RR) and a configuration that was later named after him and called Mach reflection (MR) in the early 1940s. In 1945, Smith reported on an additional wave configuration, which had a reflected shock wave that was slightly different from that of the just-mentioned Mach reflection. Smith (OSRD Rep. 6271, Off. Sci. Res. Dev., 1945) did not ascribe any special importance to the wave configuration that he observed. The wave configuration that was observed and reported by Smith (OSRD Rep. 6271, Off. Sci. Res. Dev., 1945) was recognized as an independent one only about 5 years later when White (Tech. Rep. II-10, Princeton Univ. Dept. Phys., 1951) reported on the discovery of a new wave configuration that was named double-Mach reflections (DMR) because it had similar features to that of the Mach reflection wave configuration but all the features were doubled. For this reason the Mach reflection wave configuration has been re-named single-Mach reflection (SMR). (Until the late 1970s it was called simple-Mach reflection although nothing is simple about it.). The discovery of the double-Mach reflection revealed that the wave configuration that was first observed by Smith was an intermediate wave configuration between the SMR and the DMR wave configurations. For this reason it was named transitional-Mach reflection (TMR) (Until the early 1980s it was called complex-Mach reflection although it is not the most complex one.). Since the discovery of the DMR many investigations were aimed at elucidating the exact transition criteria between the above-mentioned four different wave configurations as well as some additional configurations and sub-configurations that were discovered later. In 1991 Ben-Dor published a monograph, entitled “Shock Wave Reflection Phenomena”, that was, in fact, a state-of-the-knowledge review of the phenomena. This state-of-the-knowledge will be referred to in the followings as the “old”-state-of-the-knowledge (This state-of-the-knowledge existed until the mid 1990s. A few years later Li and Ben-Dor (Shock Wave 5(1/2), 59–73, 1995) modified the analytical approach for evaluating the transition criteria from the single-Mach to the transitional- Mach reflection (SMR, ,TMR) and from the transitional-Mach to the double-Mach reflection (TMR, ,DMR) and presented some modified and new criteria for the formation and termination of both the TMR and DMR wave configurations. Experimental results from various sources revealed that the transition boundaries between the SMR, TMR and DMR wave configurations that were based on the modified analytical approach were better than those of the “old” state-of-the-knowledge that as mentioned earlier was summarized in Ben-Dor’s (Shock Wave Reflection Phenomena, Springer, 1991) monograph. Unfortunately, however, the results of Li and Ben-Dor’s (Shock Wave 5(1/2), 59–73, 1995) modified analytical approach have not been internalized, and publications by various scientists in the past decade neglected the revised and better transition criteria and kept on referring to the old and wrong criteria that appeared in Ben-Dor’s (Shock Wave Reflection Phenomena, Springer, 1991) monograph. For this reason, a state-of-the-knowledge review that is based on the above-mentioned 10-year-old findings of Li and Ben-Dor (Shock Wave 5(1/2), 59–73, 1995) is presented herein. At the first step, the “old” state-of-the-knowledge is presented.This paper was based on work that was presented at the 2nd International Symposium on Interdisciplinary Shock Wave Research, Sendai, Japan, 1–3 March 2005.  相似文献   

11.
A Kirchhoff-Love type applied theory is used to study the specific characteristics of harmonic waves and vibrations of a helically anisotropic shell. Special attention is paid to axisymmetric and bending vibrations. In both cases, the dispersion equations are constructed and a qualitative and numerical analysis of their roots and the corresponding elementary solutions is performed. It is shown that the skew anisotropy in the axisymmetric case generates a relation between the longitudinal and torsional vibrations which is mathematically described by the amplitude coefficients of homogeneous waves. In the case of a shell with rigidly fixed end surfaces, the dependence of the first two natural frequencies on the shell length and the helical line slope α, i.e., the geometric parameter of helical anisotropy, is studied. A boundary value problem in which longitudinal vibrations are generated on one of the end surfaces and the other end is free of forces and moments is considered to analyze the degree of transformation of longitudinal vibrations into longitudinally torsional vibrations. In the case of bending vibrations, two problems for a half-infinite shell are studied as well. In the first problem, the waves are excited kinematically by generating harmonic vibrations of the shell end surface in the plane of the axial cross-section, and it is shown that the axis generally moves in some closed trajectories far from the end surface. In the second problem, the reflection of a homogeneous wave incident on the shell end is examined. It is shown that the “boundary resonance” phenomenon can arise in some cases.  相似文献   

12.
Summary Response of structures to earthquake excitations and response of vehicles to road undulations are two typical evolutionary random problems in engineering. Both kinds of the evolutionary random excitations can be regarded as evolved from stationary random excitations, though through two utterly different ways. The former one may be obtained by filtering a stationary random process through a linear time-dependent system, while the latter one may result from nonlinear transformations of the argument of a stationary random process. However, the response problems due to both types of excitations have much in common. By introducing the concept of “evolutionary frequency response”, the expressions of the response evolutionary spectra for both problems can be obtained in a unified, concise way, similar to the input/output PSD relationship in a stationary random problem. For both the evolutionary random problems, the solution procedures are all the same, but the expressions for evolutionary frequency responses are different from each other. Moreover, the evolutionary frequency responses may be interpreted as transient responses of the system subject to certain deterministic evolutionary harmonic excitations. In this sense, an evolutionary random response problem can be reduced to a deterministic response problem. Based on the complex modal analysis, a unified approach to these two response problems is derived here. The method can be applied to any linear time-invariant systems, whether they are symmetrical or not, and whether they are classically damped or not. And the method might be hopefully applied to nonlinear systems, if the statistical linearization technique is accompanied. To the knowledge of the authors, this unified approach to two types of evolutionary random response problems is the first time reported in literature. Received 28 May 1996; accepted for publication 8 January 1997  相似文献   

13.
We compare two approaches to numerically solve the mathematical model of reactive mass transport in porous media with exchange between the mobile fluid and the stationary medium. The first approach, named the “monolithic algorithm,” is the approach in which a standard finite-difference discretization of the governing transport equations yields a single system of equations to be solved at each time step. The second approach, named the “system-splitting algorithm,” is here applied for the first time to the problem of transport with mass exchange. The system-splitting algorithm (SSA) solves two separate systems of equations at each time step: one for transport in the mobile fluid, and one for uptake and reaction in the stationary medium. The two systems are coupled by a boundary condition at the mobile– immobile interface, and are solved iteratively. Because the SSA involves the solution of two smaller systems compared to that of the monolithic algorithm, the computation time may be greatly reduced if the iterative method converges rapidly. Thus, the main objective of this paper is to determine the conditions under which the SSA is superior to the monolithic algorithm (MA) in terms of computation time. We found that the SSA is superior under all the conditions that we tested, typically requiring only 0.3–50% of the computation time required by the MA. The two methods are indistinguishable in terms of accuracy. Further advantages to the SSA are that it employs a modular code that can easily be modified to accommodate different mathematical representations of the physical phenomena (e.g., different models for reaction kinetics within the stationary medium), and that each module of the code can employ a different numerical algorithm to optimize the solution.  相似文献   

14.
We investigated the influence of elastic material compressibility on parameters of an expanding spherical stress wave. The material compressibility is represented by Poisson’s ratio, ν, in this paper. The stress wave is generated by a pressure produced inside a spherical cavity surrounded by the isotropic elastic material. The analytical closed form formulae determining the dynamic state of the mechanical parameters (displacement, particle velocity, strains, stresses, and material density) in the material have been derived. These formulae were obtained for surge pressure p(t) = p 0 = const inside the cavity. From analysis of these formulae, it is shown that the Poisson’s ratio substantially influences the course of material parameters in space and time. All parameters intensively decrease in space together with an increase of the Lagrangian coordinate, r. On the contrary, these parameters oscillate versus time around their static values. These oscillations decay in the course of time. We can mark out two ranges of parameter ν values in which vibrations of the parameters are “damped” at a different rate. Thus, Poisson’s ratio in the range below about 0.4 causes intense decay of parameter oscillations. On the other hand in the range 0.4 < ν < 0.5, i.e. in quasi-incompressible materials, the “damping” of parameter vibrations is very low. In the limiting case when ν = 0.5, i.e. in the incompressible material, “damping” vanishes, and the parameters harmonically oscillate around their static values. The abnormal behaviour of the material occurs in the range 0.4 < ν < 0.5. In this case, an insignificant increase of Poisson’s ratio causes a considerable increase of the parameter vibration amplitude and decrease of vibration “damping”.   相似文献   

15.
One-point time-averaged velocity correlations and joint probability density functions (p.d.f.s) are analyzed with a multi-step method for steady three-dimensional turbulent boundary layers (3DTBLs). The data are derived from a time series of velocity fluctuations measured along the measurement axes ( 1, 2, 3). The method includes a Monte Carlo (MC) technique in which, firstly, the 3×3 Reynolds stress tensors are diagonalized locally in order to obtain the experimental eigenvalues or principal values and the experimental eigenvectors or principal axes ( 1, 2, 3). Secondly, trial independent p.d.f.s are MC-generated along these are projected from system into and the built-in hypotheses are tested for validity, using stringent self-consistency tests. All p.d.f. investigations are made with “perturbed centered-Gaussians” hypotheses, in which the “centered-Gaussians” are experimentally defined and the “perturbations” are trial drift velocities. Our MC-analysis method [1-3] is applied to the first [4] and second [5] generation “S-duct” experiments performed at the école Polytechnique Fédérale de Lausanne (EPFL). Additionally, two complementary algebraic self-consistency tests are developed for the double and the triple correlations separately. New results in the p.d.f. properties of 3DTBLs are presented, using Kinetic Theory as background. Received 6 November 2001 and accepted 27 August 2002 Published online 28 February 2003 Communicated by J.R. Blake  相似文献   

16.
This paper deals with the analysis of a one-dimensional motion of two mass points in a resistive medium. The force of resistance is described by small non-symmetric viscous friction acting on each mass point. The magnitude of this force depends on the direction of motion. The mass points are interconnected with a kinematic constraint or with an elastic element. Using the averaging method the expressions for the stationary “on the average” velocity of the systems’s motion as a single whole is found. In case of a small degree of non-symmetry an explicit expression for the stationary “on the average” velocity of the system is derived. For the other case we obtained algebraic equations for the corresponding stationary velocity.  相似文献   

17.
The initial layer phenomena for a class of singular perturbed nonlinear system with slow variables are studied. By introducing stretchy variables with different quantity levels and constructing the correction term of initial layer with different “ thickness“, the Norder approximate expansion of perturbed solution concerning small parameter is obtained, and the “ multiple layer“ phenomena of perturbed solutions are revealed. Using the fixed point theorem, the existence of perturbed solution is proved, and the uniformly valid asymptotic expansion of the solutions is given as well.  相似文献   

18.
THEPROBLEMSOFTHENONLINEARUNSYMMETRICAL.BENDINGFORCYLINDRICALLYORTHOTROPICCIRCULARPLATE(II)HuangJiayin(黄家寅);QinShengli(秦圣立);Xi...  相似文献   

19.
We consider the problem of solving numerically the stationary incompressible Navier–Stokes equations in an exterior domain in two dimensions. For numerical purposes we truncate the domain to a finite sub-domain, which leads to the problem of finding so called “artificial boundary conditions” to replace the boundary conditions at infinity. To solve this problem we construct – by combining results from dynamical systems theory with matched asymptotic expansion techniques based on the old ideas of Goldstein and Van Dyke – a smooth divergence free vector field depending explicitly on drag and lift and describing the solution to second and dominant third order, asymptotically at large distances from the body. The resulting expression appears to be new, even on a formal level. This improves the method introduced by the authors in a previous paper and generalizes it to non-symmetric flows. The numerical scheme determines the boundary conditions and the forces on the body in a self-consistent way as an integral part of the solution process. When compared with our previous paper where first order asymptotic expressions were used on the boundary, the inclusion of second and third order asymptotic terms further reduces the computational cost for determining lift and drag to a given precision by typically another order of magnitude. Peter Wittwer: Supported in part by the Fonds National Suisse.  相似文献   

20.
In this paper the numerical properties of the desingularized boundary integral formulation were studied within the framework of free surface potential problems. Several numerical experiments were carried out on simple test cases in order to investigate the effects on the accuracy of the distance between the singularity sheet and the free boundary. The optimum value of this distance was related to the mesh size by simple correlations. Once the desingularized boundary integral formulation had been so calibrated, it was implemented for the solution of two typical free surface flow problems: wave diffraction around a fixed obstacle and wave resistance of submerged bodies. Numerical results are discussed in comparison with experimental data; the computational efficiency and accuracy of desingularized algorithms are confirmed and specified. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号