首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
金属碲化物[Ga(en)~3]In~3Te~7晶体结构和性质的研究   总被引:4,自引:0,他引:4  
以有机溶剂热生长技术(solvothermaltechnique),即在180℃乙二胺(en)溶液中,以GaCl~3,InCl~3,Rb~2Te和Te在密闭容器中反应7d,制备出新的硫族化合物[Ga(en)~3]In~3Te~7。其阴离子基团为Zintlanion:~∞^2[In~3Te~7]^3^-,阳离子基团为Ga与乙二胺(en)的配合物:[Ga(en)~3]^3^+。以单晶X射线衍射技术解得该晶体结构属单钭晶系,空间群为P2~1/c,(no.14),{Ga(en)~3]In~3Te~7的晶胞数据:a=1.0460(2)nm,b=1.6981(3)nm,c=1.4994(6)nm,α=90°,β=95.46(2)°,γ=90°,V=2.651(1)nm^3,Z=4。热分析结果表明,该化合物的热分解分三步进行。光学性质测试表明它们是半导体材料,禁带宽度为1.65eV。  相似文献   

2.
Vaqueiro P 《Inorganic chemistry》2006,45(10):4150-4156
Five new thiogallates have been prepared solvothermally in the presence of ethylenediamine and characterized by single-crystal X-ray diffraction, thermogravimetry, and elemental analysis. [enH2][Ga4S7(en)2] (1), which crystallizes in the monoclinic space group P2(1)/c with lattice parameters a = 12.8698(12) angstroms, b = 10.4812(9) angstroms, c = 16.5473(14) angstroms and beta = 102.457(4) degrees (Z = 4), exhibits a layered structure in which both covalently and hydrogen-bonded template molecules coexist. The structures of [M(en)3](0.5)[GaS2] (M = Mn (2) (orthorhombic, Cmcm, a = 9.5555(6) angstroms, b = 15.0696(10) angstroms, c = 12.2893(7) angstroms, Z = 8) M = Co (3) (orthorhombic, Cmcm, a = 9.4660(7) angstroms, b = 15.0990(11) angstroms, c = 12.2540(8) angstroms, Z = 8), M = Ni (4) (orthorhombic, Cmcm, a = 9.4510(10) angstroms, b = 15.1416(15) angstroms, c = 12.2387(11) angstroms, Z = 8)) and Mn(en)2Ga2S4 (5) (monoclinic, C2/c, a = 14.3002(11) angstroms, b = 7.9509(5) angstroms, c = 12.1184(6) angstroms, beta = 100.191(4) degrees , Z = 4) are closely related and contain one-dimensional [GaS2]- chains, which are separated by [M(en)3]2+ counterions in 2, 3, and 4, and linked into a three-dimensional structure by [Mn(en)2]2+ units in 5.  相似文献   

3.
The new compounds, Sr6Sb6S17, Ba2.62Pb1.38Sb4S10, and Ba3Sb4.66S10 were prepared by the molten polychalcogenide salt method. Sr6Sb6S17 crystallizes in the orthorhombic space group P2(1)2(1)2(1) with a = 8.2871(9) A, b = 15.352(2) A, c = 22.873(3) A, and Z = 4. This compound presents a new structure type composed of [Sb3S7]5- units and trisulfide groups, (S3)2-, held together by Sr2+ ions. The [Sb3S7]5- fragment is formed from three corner-sharing SbS3 trigonal pyramids. The trisulfide groups are separated from the [Sb3S7]5- unit and embedded between the Sr2+ ions. Ba3Sb4.66S10 and Ba2.62Pb1.38Sb4S10 are not isostructural but are closely related to the known mineral sulfosalts of the rathite group. Ba3Sb4.67S10 is monoclinic P2(1)/c with a = 8.955(2) A, b = 8.225(2) A, c = 26.756(5) A, beta = 100.29(3) degrees, and Z = 4. Ba2.62Pb1.38Sb4S10 is monoclinic P2(1) with a = 8.8402(2) A, b = 8.2038(2) A, c = 26.7623(6) A, beta = 99.488(1) degrees, and Z = 4. The Sb atoms are stabilized in SbS3 trigonal pyramids that share corners to build ribbonlike slabs, which are stitched by Ba/Pb atoms to form layers perpendicular to the c-axis. These materials are semiconductors and show optical band gaps of 2.10, 2.14, and 1.64 eV for Sr6Sb6S17, Ba3Sb4.66S10, and Ba2.62Pb1.38Sb4S10, respectively. Raman spectroscopic characterization is reported. Sr6Sb6S17, Ba3Sb4.66S10, and Ba2.62Pb1.38Sb4S10 melt congruently at 729, 770, and 749 degrees C, respectively.  相似文献   

4.
Jia D  Zhao Q  Zhang Y  Dai J  Zuo J 《Inorganic chemistry》2005,44(24):8861-8867
New lanthanide thioantimonate(V) compounds, [Ln(en)3(H2O)x(mu(3-x)-SbS4)] (en = ethylenediamine, Ln = La, x = 0, Ia; Ln = Nd, x = 1, Ib) and [Ln(en)4]SbS4.0.5en (Ln = Eu, IIa; Dy, IIb; Yb, IIc), were synthesized under mild solvothermal conditions by reacting Ln2O3, Sb, and S in en at 140 degrees C. These compounds were classified as two types according to the molecular structures. The crystal structure of type I (Ia and Ib) consists of one-dimensional neutral [Ln(en)3(H2O)x(mu(3-x)-SbS(4))]infinity (x = 0 or 1) chains, in which SbS4(3-) anions act as tridentate or bidentate bridging ligands to interlink [Ln(en)3]3+ ions, while the crystal structure of type II (IIa, IIb, and IIc) contains isolated [Ln(en)4]3+ cations, tetrahedral SbS4(3-) anions, and free en molecules. A systematic investigation of the crystal structures of the five lanthanide compounds, as well as two reported compounds, clarifies the relationship between the molecular structure and the entity of the lanthanide(III) series, such as the stability of the lanthanide(III)-en complexes, the coordination number, and the ionic radii of the metals.  相似文献   

5.
An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method. 1 crystallizes in the triclinic system,space group P1 with a=7.0124(11),b=11.919(2),c=14.879(3),α=108.791(3),β=102.441(3),γ=92.846(2)o,V=1140.1(3)3,Mr=859.71,Z=2,Dc=2.504 g/cm3,μ =5.324 mm-1,F(000)=804,S=1.013,the final R=0.0297 and wR=0.0618 for 3534 observed reflections with I > 2σ(I). 1 consists of [C4H9NH3]+ cations and two-dimensional [Sb4S7]n2n- anion which is composed of three SbS3 trigonal pyramids and one SbS4 unit joined by sharing common corners. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3]+ cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.  相似文献   

6.
Two germanium thioantimonates [Co(dien)(2)](2)GeSb(4)S(10) (1, dien = diethylenetriamine) and [Mn(en)(3)]GeSb(2)S(6) (2, en = ethylenediamine) have been solvothermally synthesized and characterized by IR, UV/Vis, fluorescence spectroscopy, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and single-crystal X-ray diffraction. 1 contains heterometallic pseudosemicube [GeSb(2)S(7)] clusters and chain-like Sb(4)S(10) tetramers, which are interconnected to form a unique double layer of [GeSb(4)S(10)](4-) with 10-MR helical channels. 2 features a sheet layer of [GeSb(2)S(6)](2-) with ellipse-like 12-MR, where one [GeS(4)] tetrahedra, one [SbS(3)] trigonal-pyramid and one Ψ-[SbS(4)] trigonal bipyramid are combined to form another heterometallic [GeSb(2)S(8)] cluster as a building unit. 1 and 2 exhibit absorption edges at 2.36 eV and 2.10 eV, respectively. 2 exhibits a fluorescence emission at room temperature.  相似文献   

7.
A new family of antimony sulfides, incorporating the macrocyclic tetramine 1,4,8,11-tetraazacyclotetradecane (cyclam), has been prepared by a hydrothermal method. [C10N4H26][Sb4S7] (1), [Ni(C10N4H24)][Sb4S7] (2), and [Co(C10N4H24)]x[C10N4H26](1-x)[Sb4S7] (0.08 < or = x < or = 0.74) (3) have been characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetry, and analytical electron microscopy. All three materials possess the same novel three-dimensional Sb4S7(2-) framework, constructed from layers of parallel arrays of Sb4S8(4-) chains stacked at 90 degrees to one another. In 1, doubly protonated macrocyclic cations reside in the channel structure of the antimony-sulfide framework. In 2 and 3, the cyclam acts as a ligand, chelating the divalent transition-metal cation. Analytical and X-ray diffraction data indicate that the level of metal incorporation in 2 is effectively complete, whereas in 3, both metalated and nonmetalated forms of the macrocycle coexist within the structure.  相似文献   

8.
An inorganic-organic hybrid thioantimonate(Ⅲ) [CH3(CH2)3NH3]2Sb4S7 1 with layered structure was synthesized by solvothermal method.1 crystallizes in the triclinic system, space group P with a = 7.0124(11), b = 11.919(2), c = 14.879(3) (A), α = 108.791(3), β = 102.441(3), γ = 92.846(2)o, V = 1140.1(3) (A)3, Mr = 859.71, Z = 2, Dc = 2.504 g/cm3, μ= 5.324 mm-1, F(000) = 804, S = 1.013, the final R = 0.0297 and wR = 0.0618 for 3534 observed reflections with I>2σ(I). 1 consists of [C4H9NH3] cations and two-dimensional [Sb4S7]n2n-anion which is composed of three SbS3 trigonal pyramids and one SbS4 unit joined by sharing common corners. The anionic layers are stacked perpendicularly to the c axis of the unit cell forming two-dimensional channels between the layers. The [C4H9NH3] cations interdigitate in a bilayer and reside in the 2D channels leading to a sandwich-like arrangement of the anion and cations.  相似文献   

9.
Oxidative addition of Cp*SbX2 (X=Cl, Br, I; Cp*=C5Me5) to group 13 diyls LM (M=Al, Ga, In; L=HC[C(Me)N (Dip)]2, Dip=2,6-iPr2C6H3) yields elemental antimony (M=Al) or the corresponding stibanylgallanes [L(X)Ga]Sb(X)Cp* (X=Br 1 , I 2 ) and -indanes [L(X)In]Sb(X)Cp* (X=Cl 5 , Br 6 , I 7 ). 1 and 2 react with a second equivalent of LGa to eliminate decamethyl-1,1’-dihydrofulvalene (Cp*2) and form stibanyl radicals [L(X)Ga]2Sb . (X=Br 3 , I 4 ), whereas analogous reactions of 5 and 6 with LIn selectively yield stibanes [L(X)In]2SbH (X=Cl 8 , Br 9 ) by elimination of 1,2,3,4-tetramethylfulvene. The reactions are proposed to proceed via formation of [L(X)M]2SbCp* as reaction intermediate, which is supported by the isolation of [L(Cl)Ga]2SbCp ( 11 , Cp=C5H5). The reaction mechanism was further studied by computational calculations using two different models. The energy values for the Ga- and the In-substituted model systems showing methyl groups instead of the very bulky Dip units are very similar, and in both cases the same products are expected. Homolytic Sb−C bond cleavage yields van der Waals complexes from the as-formed radicals ([L(Cl)M]2Sb . and Cp* . ), which can be stabilized by hydrogen atom abstraction to give the corresponding hydrides, whereas the direct formation of Sb hydrides starting from [L(Cl)M]2SbCp* via concerted β-H elimination is unlikely. The consideration of the bulky Dip units reveals that the amount of the steric overload in the intermediate I determines the product formation (radical vs. hydride).  相似文献   

10.
Four novel polyoxotungstates have been synthesized by reaction of the sandwich type compound [Fe (III) 4(H 2O) 10(B-beta-SbW 9O 33) 2] (6-) (noted Fe 4(H 2O) 10Sb 2W 18) with ethylenediamine (en) and/or oxalate (ox) ligands under various conditions. The one-dimensional (1D) compound [enH 2] 3[Fe (III) 4(H 2O) 8(SbW 9O 33) 2].20H 2O ( 1) is isolated at 130 degrees C and results from the elimination of two water molecules and the condensation of the polyoxotungstate precursor. The reaction of Fe 4(H 2O) 10Sb 2W 18 with oxalate ligands affords the molecular complex Na 14[Fe (III) 4(ox) 4(H 2O) 2(SbW 9O 33) 2].60H 2O ( 2) where two organic ligands substitute four water molecules, while the same reaction in the presence of en molecules at 130 degrees C leads to the formation of the functionalized 1D chain [enH 2] 7[Fe (III) 4(ox) 4(SbW 9O 33) 2].14H 2O ( 3) with protonated ethylenediamine counterions. Finally, at 160 degrees C a rearrangement of the Fe 4(H 2O) 10Sb 2W 18 polyoxotungstate is observed, and the sandwich type compound [enH 2] 5[Fe (II) 2Fe (II) 2(enH) 2(Fe (III)W 9O 34) 2].24H 2O ( 4) crystallizes. In 4, the heteroelement is a Fe (III) ion, and the water molecules on the two outer Fe (II) centers are bound to pendant monoprotonated en ligands. The four compounds have been characterized by IR spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. A detailed study of the magnetic properties of the mixed-valent hexanuclear iron complex in 4 shows evidence of an S = 5 ground-state because of spin frustration effects. A quantification of the electronic parameters characterizing the ground state ( D = +1.12 cm (-1), E/ D = 0.15) confirms that polyoxotungstate ligands induce large magnetic anisotropy.  相似文献   

11.
Two novel lanthanoid thioantimonates [Sm(4)(tepa)(4)(μ-η(2),η(3)-Sb(3)S(7))(2)(μ-Sb(2)S(4))] (1, tepa = tetraethylenepentamine) and [Eu(2)(tepa)(2)(μ-SbS(3))(μ-OH)](2)(SbS(4))(OH)·H(2)O (2) were solvothermally synthesized. Compound 1 represents the only example of different types of [Sb(3)S(7)](5-) and [Sb(2)S(4)](2-) anions coexisting in the same lanthanoid thioantimonate framework, while 2 displays rare mixed-valent Sb(3+)/Sb(5+) character with the Sb(3+) in a noncondensed pyramid [Sb(III)S(3)](3-). The theoretical band structure and luminescence properties have also been investigated.  相似文献   

12.
Novel neutral antimony(V) complexes were isolated as crystalline materials and characterized by IR and NMR spectroscopy: o-amidophenolate complexes [4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-amidophenolato]triphenylantimony(V) (Ph3Sb[AP-Me], 1) and [4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-amidophenolato]triphenylantimony(v) (Ph3Sb[AP-iPr], 2); catecholate complexes (3,6-di-tert-butyl-4-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)Cat], 3), its methanol solvate 3CH3OH (4); (3,6-di-tert-butyl-4,5-di-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)2Cat], 5) and its acetonitrile solvate 5CH3CN (6). Complexes 1-7 were synthesized by oxidative addition of the corresponding o-iminobenzoquinones or o-benzoquinones to Ph3Sb. In the case of the phenanthrene-9,10-diolate (PhenCat) ligand, two different complexes were isolated: Ph3Sb[PhenCat] (7) and [Ph4Sb]+[Ph2Sb(PhenCat)2]- (8). Complexes 7 and 8 were found to be in equilibrium in solution. Molecular structures of 2, 4, 6, and 8 were determined by X-ray crystallography. Complexes 1-7 reversibly bind molecular oxygen to yield Ph3Sb[L-Me]O2 (9), Ph3Sb[L-iPr]O2 (10), Ph3Sb[(MeO)L']O2 (11), Ph3Sb[(MeO)2L']O2 (12) and Ph3Sb[PhenL']O2 (13), which contain five-membered trioxastibolane species (where L is the O,O',N-coordinated derivative of a 1-hydroperoxy-6-(N-aryl)-iminocyclohexa-2,4-dienol, and L' the O,O',O'-coordinated derivative of 6-hydroperoxy-6-hydroxycyclohexa-2,4-dienone). Complexes 9-13 were characterized by IR and 1H NMR spectroscopy and X-ray crystallography.  相似文献   

13.
The ternary rare-earth gallium antimonides, REGaSb(2) (RE = La--Nd, Sm), have been synthesized through reaction of the elements. The structures of SmGaSb(2) (orthorhombic, space group D(5)(2)-C222(1), Z = 4, a = 4.3087(5) A, b = 22.093(4) A, c = 4.3319(4) A) and NdGaSb(2) (tetragonal, space group D(19)(4h)-I4(1)/amd, Z = 8, a = 4.3486(3) A, c = 44.579(8) A) have been determined by single-crystal X-ray diffraction. The SmGaSb(2)-type structure is adopted for RE = La and Sm, whereas the NdGaSb(2)-type structure is adopted for RE = Ce--Nd. The layered SmGaSb(2) and NdGaSb(2) structures are stacking variants of each other. In both structures, two-dimensional layers of composition (2)(infinity)[GaSb] are separated from square nets of Sb atoms [Sb] by RE atoms. Alternatively, the structures may be considered as resulting from the insertion of zigzag Ga chains between (2)(infinity)[RE Sb(2)] slabs. In SmGaSb(2), all of the Ga chains are parallel and the (2)(infinity)[SmSb(2)] layers are stacked in a ZrSi(2)-type arrangement. In NdGaSb(2), the Ga chains alternate in direction, resulting in a doubling of the long axis relative to SmGaSb(2), and the (2)(infinity)[NdSb(2)] layers are stacked in a Zr(3)Al(4)Si(5)-type arrangement. Extended Hückel band structure calculations are used to explain the bonding in the [GaSb(2)](3-) substructure.  相似文献   

14.
An inorganic-organic hybrid lanthanide selenidostannate [{Tb(en)3}2(μ-OH)2]Sn2Se6(1) was synthesized by the solvothermal method.1 crystallizes in the monoclinic system,space group P21/n with a=10.120(2),b=11.781(3),c=15.403(3),β=99.534(5)°,V=1811.1(7)3,Mr=1423.62,Z=2,Dc=2.611 g/cm3,μ=11.281 mm-1,F(000)=1312,S=1.101,the final R= 0.0400 and wR=0.0853 for 3242 observed reflections with Ⅰ> 2σ(Ⅰ).1 consists of a [Sn2Se6]4-and a [{Tb(en)3}2(μ-OH)2]4+ ions.The [Sn2Se6]4-anion is constructed by two SnSe4 tetrahedra sharing a common edge.The binuclear [{Tb(en)3}2(μ-OH)2]4+ complex is composed of two [Tb(en)3]3+ ions joined by two μ-OH bridging ligands.The Tb3+ ion lies in an eight-coordinated bicapped trigonal prism.In 1,the [Sn2Se6]4-and [{Tb(en)3}2(μ-OH)2]4+ moieties are connected into a 3-D network via N-H···Se and O-H···Se H-bonds.  相似文献   

15.
Jia D  Zhang Y  Zhao Q  Deng J 《Inorganic chemistry》2006,45(24):9812-9817
Novel selenidoantimonate compounds [M(dien)2]2Sb4Se9 [M = Mn (1), Fe (2)], [Co(dien)2]2Sb2Se6 (3), and [Ni(dien)2]2Sb2Se5 (4) (dien = diethylenetriamine) were solvothermally synthesized and characterized. The unique features of compounds 1-3 are the mixed-valent anionic structures constructed by the Sb(III)Se3 trigonal pyramid and Sb(V)Se4 tetrahedron. Three Sb(III)Se3 pyramids share common corners, forming a heterocyclic Sb3Se6 moiety, and the Sb3Se6 moieties are further connected with Sb(V)Se4 tetrahedra to form the novel one-dimensional [Sb4Se9(4-)]n anionic chain in 1 and 2. The discrete [Sb2Se6]4- anion in 3 is formed by an Sb(III)Se3 trigonal pyramid and an Sb(V)Se4 tetrahedron sharing a common corner. The [Sb2Se5]4- anion in 4 is composed of two Sb(III)Se3 trigonal pyramids connected in the same manner as the [Sb2Se6]4- anion. The mixed-valent [Sb4Se9(4-)]n and [Sb2Se6]4- anions were not observed before. The synthesis and solid-state structural studies of the title compounds show that the transition-metal complexes exhibit different structure-directing effects on the formation of selenidoantimonates in dien. Extensive N-H...Se hydrogen bonds are observed between cations and anions in compounds 1-4, resulting in three-dimensional network structures. Optical and thermal properties of the compounds are reported.  相似文献   

16.
Exploiting the ability of the [M(SC[O]Ph)(4)](-) anion to behave like an anionic metalloligand, we have synthesized [Li[Ga(SC[O]Ph)(4)]] (1), [Li[In(SC[O]Ph)(4)]] (2), [Na[Ga(SC[O]Ph)(4)]] (3), [Na(MeCN)[In(SC[O]Ph)(4)]] (4), [K[Ga(SC[O]Ph)(4)]] (5), and [K(MeCN)(2)[In(SC[O]Ph)(4)]] (6) by reacting MX(3) and PhC[O]S(-)A(+) (M = Ga(III) and In(III); X = Cl(-) and NO(3)(-); and A = Li(I), Na(I), and K(I)) in the molar ratio 1:4. The structures of 2, 4, and 6 determined by X-ray crystallography indicate that they have a one-dimensional coordination polymeric structure, and structural variations may be attributed to the change in the alkali metal ion from Li(I) to Na(I) to K(I). Crystal data for 2 x 0.5MeCN x 0.25H(2)O: monoclinic space group C2/c, a = 24.5766(8) A, b = 13.2758(5) A, c = 19.9983(8) A, beta = 108.426(1) degrees, Z = 8, and V = 6190.4(4) A(3). Crystal data for 4: monoclinic space group P2(1)/c, a = 10.5774(7) A, b = 21.9723(15) A, c = 14.4196(10) A, beta = 110.121(1) degrees, Z = 4, and V = 3146.7(4) A(3). Crystal data for 6: monoclinic space group P2(1)/c, a = 12.307(3) A, b = 13.672(3) A, c = 20.575(4) A, beta = 92.356(4) degrees, Z = 4, and V = 3458.8(12) A(3). The thermal decomposition of these compounds indicated the formation of the corresponding AMS(2) materials.  相似文献   

17.
1 INTRODUCTION The chalcogenidometallates with open frame- works have attracted considerable interest as pos- sible zeolite-like materials, of which highly interes- ting properties could be expected. Over the last de- cades a large number of thioanti…  相似文献   

18.
[Au(en)Cl(2)]Cl.2H(2)O, where en = ethylenediamine (1,2-diaminoethane), has been synthesized, and its structure has been solved for the first time by the single-crystal X-ray diffraction method. The complex has square-planar geometry about Au(III), and the anionic Cl- is located in the apical position and at a distance of 3.3033(10) A compared to 2.2811(9) and 2.2836(11) A for the coordinated Cl-. [Au(en)Cl2]Cl.2H2O belongs to the space group Pbca with a = 11.5610(15) A, b = 12.6399(17) A, c = 13.2156(17) A, alpha = beta = gamma = 90 degrees , and Z = 8. Bond lengths of Au-N are 2.03 A. [Au(en)Cl2]Cl.2H2O is less thermally stable than [Au(en)2]Cl3 because of the replacement of two Cl ligands by a second en ligand in the latter. Cyclic voltammetry shows that the formal potential of Au(III)/Au(0) becomes more negative in the series [AuCl4]-, [Au(en)Cl2]+, and [Au(en)2]3+. 1H, 13C, and 31P NMR reveal that in an aqueous solution [Au(en)Cl2]+ bonds to guanosine 5'-monophosphate, 5'-GMP (1:1 mole ratio), via N7, although the stability is not very high. NMR data also indicate that N7-O6 or N7-phosphate 5'-GMP chelation, as found in some gold(III) nucleotide complexes, is not present. The gold(III) complex undergoes hydrolysis at pH >2.5-3.0 and, therefore, N1 coordination to 5'-GMP is not observed. No direct coordination between 5'-GMP and [Au(en)2]Cl3 is observed.  相似文献   

19.
The reaction of [Cp2*Rh2Cl4] (Cp* = C5Me5) with a slight excess of K(3)SbS(3) in boiling THF gave the neutral clusters [Cp*4Rh4S5] (1), [Cp*3Rh3Sb2S5] (2), and after salt metathesis [Cp*3Rh3SbSn]PF6 (3; n = 5 and 6). The structures of 1-3 are heterocubane clusters with CpRh, S, and Sb vertices but with sulfur inserted into one (1 and 2) or two (3) edges. X-ray diffraction analysis of 2 additionally reveals a very short Sb-S distance of 2.297(1) A within the novel mu3-Sb2S4 ligand. Density functional theory calculation of the model compounds [SSbS]3-, [HSSbS]2-, and [HSSbH2S]0 provided strong evidence for the existence of a stable terminal Sb=S double bond in 2.  相似文献   

20.
Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号