首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
The successive phase transitions of BaZnGeO4 have been studied on meltsolidified samples. A new solid phase (named phase VI) has been found below 186.1 K in samples of large particle size (diameter:D0.1 mm). The higher temperature crystalline phase V can be supercooled easily down to liquid helium temperature. On heating, however, it transforms into phase VI above 95 K in a slow exothermic process. Heat capacities have been measured by adiabatic calorimetry between 14 and 300 K. The enthalpy and entropy of the V–VI phase transition are 187.1 Jmol–1 and 0.971 J K–1 mol–1, respectively. The corresponding data for the IV–V phase transition at 199.8 K are 229.3 J mol–1 and 1.168 JK–1 mol–1. The phase VI does not appear in samples of smaller particle size (D0.1 mm).  相似文献   

2.
The effect of high pressure (6 GPa) on the formation of new phases in a polycrystalline mixture GaSb: Mn = 1: 1 upon heating was studied. Sphalerite-type solid solutions with a small amount of Mn form at temperatures below 520–600 K. At higher temperatures, new crystalline GaSbMn phases are synthesized: a phase with a simple cubic structure with a lattice parameter a = 2.946 ± 0.001 Å (at 620–670 K) and a phase with a tetragonal CuAl2-type structure (space group I4/mcm) with lattice parameters a = 6.426 ± 0.004 Å and c = 5.349 ± 0.004 Å (at 690–870 K). These new phases are metastable under normal conditions and have magnetic properties. The structure, conductivity, and thermal stability of the synthesized phases are investigated, and the products of decomposition of these new phases upon annealing are analyzed.  相似文献   

3.
A Ni-P solid solution phase was obtained by quenching of melts under a pressure of 4.5 GPa. This was considered as a metastable high pressure phase. Despite the lack of thermodynamic parameters for Ni80, P20 alloy under pressure, the degree of undercooling, nucleation frequency and crystal growth velocity were calculated. We conclude that metastable phases with the same composition as the melting phase, such as supersaturated solid solution phase and amorphous phase, are easily prepared by high-pressure quenching.  相似文献   

4.
We report a solidification mechanism transition of liquid ternary Co45Cu45Ni10 alloy when it solidifies at a critical undercooling of about 344 K. When undercooling at ΔT<344 K, the solidification process is characterized by primary S (Co) dendritic growth and a subsequent peritectic transition. The dendritic growth velocity of S (Co) dendrite increases with the rise of undercooling. However, once ΔT>344 K, the solidification velocity decreases with the increase of undercooling. In this case, liquid/liquid phase separation takes place prior to solidification. The minor L2 (Cu) droplets hinder the motion of the solidification front, and a monotectic transition may occur in the major L1 phase. These facts caused by metastable phase separation are responsible for the slow growth at high undercoolings.  相似文献   

5.
Bulk La2/3Sr1/3MnO3 ceramic samples prepared by thermal decomposition are investigated using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). An abnormal phenomenon, where three kinds of La2/3Sr1/3MnO3 phases with different structures and the same composition coexist in the same grain, has been observed. Besides the stable rhombohedral majority phase, the two other phases are a simple cubic structure with a=0.389 nm and a new hexagonal structure with a=0.544 nm, c=0.668 nm. The simple cubic phase is a residual phase of high-temperature due to the size effect and bondage of twin boundary. Image simulations have suggested that the new hexagonal phase is the La-Sr ordered structure with space group , which is converted from the disordered simple cubic phase. The formation mechanism of the ordered phase is explained from volume energy and interface energy considerations.  相似文献   

6.
臧渡洋  王海鹏  魏炳波 《物理学报》2007,56(8):4804-4809
研究了深过冷条件下三元Ni80Cu10Co10合金的快速枝晶生长, 采用电磁悬浮无容器处理方法获得了335 K(0.2TL)的最大过冷度. X射线衍射分析与差示扫描量热分析均表明,凝固组织为α-Ni单相固溶体. 随过冷度增大, 凝固组织显著细化, 并且当过冷度达110 K时,凝固组织的形态由粗大形枝晶转变为等轴晶. 深过冷条件下溶质截留效应增强, 使得微观偏析程度减小. 对不同过冷度下合金枝晶的生长速度进 关键词: 深过冷 枝晶生长 快速凝固 溶质截留  相似文献   

7.
The mechanical stabilities of K4 carbon and K4-like NaC2 have been studied by performing first-principle calculations. Total energies as functions of isotropic deformations and volume-conserving tetragonal and trigonal deformations have been calculated. For K4 carbon, the total energy shows a minimum for isotropic and trigonal deformations, but exhibits maxima for tetragonal deformation. In contrast, the total energy of K4-like NaC2 shows a minimum under all three deformations. These results indicate that K4 carbon is not a metastable phase, but that K4-like NaC2 is a metastable phase. In addition, the heat of formation of K4-like NaC2 is discussed.  相似文献   

8.
The local structure of the ferroelectric-relaxor PbSc1/2Nb1/2O3 in the temperature range from 550 to 220 K has been investigated using 45Sc nuclear magnetic resonance. It has been found that, in the paraelectric phase at temperatures below 550 K, the crystal consists of regions of an ordered elpasolite structure and inclusions of the disordered tetragonal perovskite phase with displacements along directions of the [001] type. The relative weight of the tetragonal structure in the region of the paraelectric phase is approximately equal to 0.28. Below the temperature of the phase transition from the disordered modification to the polar phase, the relative weight of the tetragonal phase decreases with decreasing temperature. The tetragonal structure is replaced by the trigonal polar structure. In a wide temperature range (∼50 K), there exists a heterophase structure that is characteristic of relaxors. Note that the correlation length of displacements in the tetragonal phase should be very small to explain the absence of indications of the existence of this phase in the diffraction data.  相似文献   

9.
A retrospective critical analysis of phase diagrams of the CoMnO system in air has been made. A high-temperature phase equilibrium of the CoMnO system in air and phase diagrams of this system under different cooling conditions (quenching in water, quenching in air, cooling at rate of 25°K h?1) have been constructed. A comparative analysis of these diagrams shows that whatever the cooling rate, cooling does not preserve the high-temperature state of the system and is accompanied (depending on cooling conditions, temperature and Co/Mn ratio) by one or more of the following phenomena: (1) oxidation of the CoNMn1?NO solution to spinel-type solid solutions (2) merging of a cubic and tetragonal spinel phase and formation of a homogeneous tetragonally distorted spinel (3) tetragonal distortion of the spinel lattice (4) decomposition of the cubic spinel into a cubic and tetragonal spinel. (5) decomposition of the cubic spinel into a cubic, tetragonal and slightly distorted tetragonal spinel. Therefore, the form of the phase diagram of the CoMnO system in air is entirely determined by the method of cooling.  相似文献   

10.
Zirconium dioxide ZrO2 and hafnium dioxide HfO2 are investigated using high-temperature Raman spectroscopy in the temperature range 300–2080 K, including the regions of the monoclinic-tetragonal phase transitions revealed in these materials. An analysis is made of the specific features observed in the evolution of the high-temperature Raman spectra of both the monoclinic (m) and tetragonal (t) modifications of ZrO2 and HfO2 with variations in the temperature. The polarized Raman spectra of the metastable tetragonal phases in solid solutions based on zirconia and hafnia are used to identify the symmetry of vibrations in the spectra of the tetragonal modifications of pure zirconium and hafnium dioxides, which exist at high temperatures.  相似文献   

11.
The phase separation and rapid solidification of liquid ternary Co45Cu42Pb13 immiscible alloy have been investigated under both bulk undercooling and containerless processing conditions. The undercooled bulk alloy is solidified as a vertical two-layer structure, whereas the containerlessly solidified alloy droplet is characterized by core-shell structures. The dendritic growth velocity of primary α(Co) phase shows a power-law relation to undercooling and achieves a maximum of 1.52 m/s at the undercooling of 112 K. The Pb content is always enriched in Cu-rich zone and depleted in Co-rich zone. Numerical analyses indicate that the Stokes motion, solutal Marangoni convection, thermal Marangoni convection, and interfacial energy play the main roles in the correlated process of macrosegregation evolution and microstructure formation.  相似文献   

12.
The metastable liquid phase separation and rapid solidification of Cu60Fe30Co10 ternary peritectic alloy were investigated by using the drop tube technique and the differential scanning calorimetry method. It was found that the critical temperature of metastable liquid phase separation in this alloy is 1623.5 K, and the two separated liquid phases solidify as Cu(Fe,Co) and Fe(Cu,Co) solid solutions, respectively. The undercooling and cooling rate of droplets processed in the drop tube increase with the decrease of their diameters. During the drop tube processing, the structural morphologies of undercooled droplets are strongly dependent on the cooling rate. With the increase of the cooling rate, Fe(Cu,Co) spheres are refined greatly and become uniformly dispersed in the Cu-rich matrix. The calculations of Marangoni migration velocity (V M) and Stokes motion velocity (V S) of Fe(Cu,Co) droplets indicated that Marangoni migration contributes more to the coarsening and congregation of the minor phase during free fall. At the same undercooling, the V M/V S ratio increases drastically as Fe(Cu,Co) droplet size decreases. On the other hand, a larger undercooling tends to increase the V M/V S value for Fe(Cu,Co) droplets with the same size. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101 and 50395105) and the Scientific and Technological Creative Foundation of Youth in Northwestern Polytechnical University of China (Grant No. W016223)  相似文献   

13.
Measurements of the spin-lattice relaxation time, NMR absorption line and magnetization have been carried out on the Tl3H(SO4)2 crystal below 50 K. The anomaly at around 7 K was: (1) the spin-lattice relaxation times of 1H and 205Tl nuclei increase steeply with decreasing temperature below 7 K, (2) the NMR absorption lines below 7 K shift to the high-magnetic field side in comparison with that above 7 K, and (3) the 1H NMR line width exhibits a drastic increase of the line width with decreasing temperature below 7 K. These results indicate that the magnetic dipole fluctuation of the proton changes at 7 K. On the other hand, there are no remarkable anomalies of magnetic susceptibility at around 7 K. From these results it is deduced that the anomaly at around 7 K is caused by the change in quantum mechanical process of the proton from proton tunneling to zero-point vibration of hydrogen in the hydrogen bond with the decrease of temperature.  相似文献   

14.
殷涵玉  鲁晓宇 《物理学报》2008,57(7):4341-4346
实现了大体积Cu60Sn30Pb10偏晶合金的深过冷与快速凝固. 实验获得的最大过冷度为173 K(0.17TL). 凝固组织发生了明显的宏观偏析,XRD分析表明,试样上部是由固溶体(Sn),(Pb)相和金属间化合物ε(Cu3Sn)相组成的三相区,下部为富(Pb)相区. 在小过冷条件下,三相区中ε(Cu3Sn)相的凝固组织为粗大的枝晶,随着过冷度的增大,ε(Cu3Sn)相细化成层片状组织,且层片间距随过冷度的增大而减小,而(Sn),(Pb)两相始终以离异共晶的方式存在. 富(Pb)相区中分布有少量的ε(Cu3Sn)枝晶,枝晶长度随过冷度的增大而增大,且在大过冷条件下发生碎断. (Sn)相在ε(Cu3Sn)相表面形核、长大,其形态类似于包晶凝固组织. 关键词: 深过冷 快速凝固 偏晶合金 层片组织  相似文献   

15.
A crystal-to-amorphous structural transition was induced in the Ni25W75 and Ni35W65 multilayers by ion irradiation at room temperature. More interestingly, prior to complete amorphization, a sequential disordering of first Ni and then W crystalline lattices was observed in the Ni25W75 sample with increasing ion dose. Such sequence in disordering is attributed to the difference in melting points between the two constituent metals. In another two multilayered samples with overall compositions of Ni60W40 and Ni78Nb22, ion irradiation under similar conditions resulted in the formation of two Ni-based fcc solid solutions, respectively. In comparison, the same Ni-based fcc solid solution was formed in the Ni35W65 multilayered sample upon solid-state reaction at 500 °C. Solid-state reaction at 550 °C resulted in the formation of a new W-rich metastable hcp phase in the Ni25W75 multilayered sample and the bcc–hcp transition was thought to be realized through a shearing mechanism. A Gibbs free-energy diagram, including the free-energy curves of the newly formed metastable crystalline phases, of the Ni-W system was calculated based on Miedema’s model and it can give a reasonable explanation of the observed sequential disordering. The calculated results also showed that the free-energy difference between the amorphous and metastable crystalline phases was quite small, leading to a situation that the phase selection, namely which phase was more favored to be formed eventually than its competitors, was influenced or even determined by the kinetics involved in the respective processes. Besides, the growth kinetics of the MX phases was also discussed. Received: 26 January 1999 / Accepted: 8 March 1999 / Published online: 14 June 1999  相似文献   

16.
Carbon nitride nanocrystals were prepared using a pulsed laser induced liquid–solid interfacial reaction and transmission electron microscopy, while high resolution electron microscopy characterized their morphology and structure. It is important that the cubic-C3N4 phase was observed. The formation mechanism of the carbon nitride nanocrystals is also discussed. Received: 23 May 2000 / Accepted: 26 May 2000 / Published online: 2 August 2000  相似文献   

17.
在Ag38.5Cu33.4Ge28.1三元共晶合金的深过冷实验中,获得的最大过冷度为175 K(0.22TE). XRD分析表明,不同过冷条件下其共晶组织均由(Ag),(Ge)和η(Cu3Ge)三相组成. 在小过冷条件下,三个共晶相协同生长,凝固组织粗大.随着过冷度的增大,共晶组织明显细化,(Ge)相与其他两相分离,以初生相方式生长,而(Ag)相与η相始终呈二相层片共晶方式共生生长. 当过冷度超过80 K时,初生相(Ge)由小过冷时的块状转变为具有小面相特征的枝晶方式生长. 部分小面相(Ge)枝晶出现规则的花状,花瓣数介于5—8之间,并且过冷度越大(Ge)相越容易分瓣. 花状(Ge)枝晶的晶体表面为{111}晶面簇,择优生长方向为〈100〉晶向族. 关键词: 三元共晶 晶体形核 深过冷 快速凝固  相似文献   

18.
Bulk samples and small droplets of liquid Fe-10%Sb alloys are undercooled up to 429 K (0.24TL) and 568 K (0.32TL), respectively, with glass fluxing and free fall techniques. The high undercooling does not change the phase constitution, and only the αFe solid solution is found in the rapidly solidified alloy. The experimental results show that when the undercooling is below 296 K, the growth velocity of αFe dendrite rises exponentially with the increase of undercooling and reaches a maximum value 1.38 m/s. S...  相似文献   

19.
A modified hydrogenation–disproportionation desorption-recombination (HDDR) process consisting of (i) solid disproportionation and (ii) slow recombination under partial hydrogen pressure has been applied to a Nd16.2Fe78.2B5.6 alloy. Scanning electron microscopy shows that an initially fine rod-like structure of NdHx and Fe observed after 15 min of hydrogenation at 900°C is transformed into a granular morphology with prolonged annealing. Simultaneously, finely dispersed tetragonal Fe3B particles of 10–50 nm diameter exist. XRD studies show that this metastable Fe3B phase is transformed to Fe2B and Fe on further annealing. Short solid-disproportionation times result in a higher degree of anisotropy after recombination, whereas long annealing times and conventional processing lead to isotropic material. It is concluded that the formation of the intermediate tetragonal Fe3B phase after solid disproportionation is pivotal for the inducement of texture in HDDR processed ternary NdFeB-type alloys.  相似文献   

20.
The phase transition from the tetragonal to the orthorhombic structure in La2–x Sr x CuO4+ has been studied combining elastic and inelastic neutron scattering and specific heat measurements on the same well characterized crystals. This analysis focusses on the comparison between undoped and doped compounds. The proportionality between the orderparameter and the orthorhombic strain, predicted by the Landau theory, can be confirmed in La2–x Sr x CuO4+ in a wide concentration and temperature range. We observe different values for the critical exponent for doped superconducting and undoped insulating crystals. The temperature dependent study of the soft modes on a metallic superconducting crystal reveals an extremely large temperature range where this mode is strongly anharmonic. The comparison with previously published data shows that the frequencies of the soft modes at low temperatures decrease with doping, i.e. with increasing charge carrier concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号