首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The miscibility of random copolymers of o-chlorostyrene and p-chlorostyrene [P (oClSt-co-pClSt)] with partially phenylsulfonylated poly (2,6-dimethyl-1,4-phenylene oxide) (SPPO) copolymers has been studied, using differential scanning calorimetry (DSC) to establish Tg behavior. It already has been established that the isomeric effect of the chlorine substitution on miscibility is large. Thus the para-chloro-substituted styrenic homopolymer is miscible with all SPPOs containing more than ~ 5 mol % phenylsulfonylation, whereas the ortho-chloro-substituted homopolymer is immiscible with the entire range of SPPO copolymer compositions (and also with the respective homopolymers). As a result of this asymmetric behavior of the homopolymers, the width of the window of miscibility in blends now investigated containing copolymers with high pClSt content and SPPO is much greater than in the corresponding blends containing copolymers with large mole fraction of oClSt. These differences are reflected in the corresponding χ parameters calculated from analysis of the data. It was also found that the miscibility is temperature dependent and that the regime in the copolymer-copolymer composition plane shrank as the equilibrium temperature increased, results indicative of LCST behavior. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The miscibility and structure of A-B copolymer/C homopolymer blends with special interactions were studied by aMonte Carlo simulation in two dimensions. The interaction between segment A and segment C was repulsive, whereas it wasattractive between segment B and segment C. In order to study the effect of copolymer chain structure on the morphologyand structure of A-B copolymer/C homopolymer blends, the alternating, random and block A-B copolymers were introducedinto the blends, respectively. The simulation results indicated that the miscibility of A-B block copolymer/C homopolymerblends depended on the chain structure of the A-B copolymer. Compared with alternating or random copolymer, the blockcopolymer, especially the diblock copolymer, could lead to a poor miscibility of A-B copolymer/C homopolymer blends.Moreover, for diblock A-B copolymer/C homopolymer blends, obvious self-organized core-shell smicture was observed inthe segment B composition region from 20% to 60%. However if diblock copolymer composition in the blends is less than40%, obvious self-organized core-shell structure could be formed in the B-segment component region from 10 to 90%.Furthermore, computer statistical analysis for the simulation results showed that the core sizes tended to increasecontinuously and their distribution became wider with decreasing B-segment component.  相似文献   

3.
Binary blends of a diblock copolymer (AB) and an incompatible homopolymer (C) confined in spherical cavities are studied using a simulated annealing technique. The phase behavior of the blends is examined for four typical cases, representing the different selectivity of the pore surface to the A, B, and C species. The internal morphology of the spherical polymeric particles is controlled by the homopolymer volume fraction, the degree of confinement, and the composition of the copolymer. Inside a particle, the homopolymers segregate to form one or, under some conditions, two domains; thus, the homopolymers may act as an additional controlling parameter of the shape and symmetry of the copolymer domain. A rich array of confinement-induced novel diblock copolymer morphologies is predicted. In particular, core-shell particles with the copolymers as the shell wrapping around a homopolymer core or a copolymer-homopolymer combined core and Janus-like particles with the copolymers and the homopolymers on different sides are obtained.  相似文献   

4.
We report the results of theoretical and experimental studies of random amorphous styrene-co-vinyl phenol (STVPh) copolymer blends with ethylene-co-methyl acrylate (EMA). This work is a natural extension to our recently reported studies of the phase behavior of analogous STVPh blends with an homologous series of poly(n-alkyl methacrylate) homopolymers, where we employed an association model together with parameters obtained from studies of miscible homopolymer blends. Here we emphasize that there is no conceptual difference between the average chemical repeat of a random copolymer and that of an analogous repeat unit of a homopolymer containing the same number and type of functional groups. The theoretically calculated miscibility maps for STVPh - EMA copolymer blends are in outstanding agreement with experiment.  相似文献   

5.
Recent experiments suggest that thermodynamically stable, bicontinuous microemulsions can be achieved in symmetric ternary blends of two homopolymers and a diblock copolymer by formulating alloys with compositions near mean-field isotropic Lifshitz points. We argue that practical application of this design criterion may require use of homopolymers of unequal molecular weights and block copolymers of different architecture. We demonstrate the existence of, and explicitly locate, mean-field isotropic Lifshitz points in ternary blends with homopolymer molecular weight asymmetry and either AB diblock or ABA triblock copolymer architectures. These calculations considerably expand the parameter space for observing bicontinuous microemulsions and allow for more flexibility in tailoring melt rheological properties and solid-state mechanical properties. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2775–2786, 1997  相似文献   

6.
The microscopic Polymer Reference Interaction Site Model theory is employed to study, for the first time, the effective interactions, spatial organization, and miscibility of dilute spherical nanoparticles in non‐microphase separating, chemically heterogeneous, compositionally symmetric AB multiblock copolymer melts of varying monomer sequence or architecture. The dependence of nanoparticle wettability on copolymer sequence and chemistry results in interparticle potentials‐of‐mean force that are qualitatively different from homopolymers. An important prediction is the ability to improve nanoparticle dispersion via judicious choice of block length and monomer adsorption‐strengths which control both local surface segregation and chain connectivity induced packing constraints and frustration. The degree of dispersion also depends strongly on nanoparticle diameter relative to the block contour length. Small particles in copolymers with longer block lengths experience a more homopolymer‐like environment which renders them relatively insensitive to copolymer chemical heterogeneity and hinders dispersion. Larger particles (sufficiently larger than the monomer diameter) in copolymers of relatively short block lengths provide better dispersion than either a homopolymer or random copolymer. The theory also predicts a novel widening of the miscibility window for large particles upon increasing the overall molecular weight of copolymers composed of relatively long blocks. The influence of a positive chi‐parameter in the pure copolymer melt is briefly studied. Quantitative application to fullerenes in specific copolymers of experimental interest is performed, and miscibility predictions are made. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1098–1111  相似文献   

7.
通过控制均聚物与共聚物共混过程中的相行为,能够得到许多性能优异的材料。本文从理论和实验两方面总结了影响均聚物/共聚物共混体系相容性和形态结构的因素,主要包括均聚物的分子量、浓度,共聚物的组成、结构、浓度,与均聚物相应的共聚物组分的分子量,共聚物分子内的相互作用,均聚物与共聚物分子间的相互作用等。  相似文献   

8.
Amorphous polyarylene ether homo- and copolymers were synthesized which were based upon bisphenol A and either 4, 4'-dichlorodiphenylsulfone, 4, 4'-difluorobenzophenone or 4, 4'-difluorodiphenyl phenylphosphine oxide. Solution blends were prepared from these homo- and copolymers with linear bisphenol A based polyhydroxyether, which was used as a model for the epoxy or vinyl ester thermosetting matrix resins for composite materials. It was observed that transparent, single Tg blends could be prepared from the phosphine oxide containing homopolymer and a 50/50 phosphine oxide/dichlorodiphenylsulfone copolymer. The other homopolymers produced materials with two Tg's, implying that they were definitely phase separated systems. Thermogravimetric analysis was also conducted and the phosphine oxide blends produced high char yields suggesting utilization in fire-resistant applications. The miscibility of the phosphine oxide material has been attributed to specific hydrogen bonding interactions observed between the phosphine oxide bond and the secondary hydroxyl group in the polyhydroxy ether. This hydroxyl functionality is also present in the epoxy and vinylester precursors and it is suggested that these materials could be utilized as interface sizings for carbon fibers, which would produce a graded microstructure between the fiber and the polymer matrix systems.  相似文献   

9.
We study theoretically mixed solutions of homopolymer and diblock copolymer chains. The solvent is a poor solvent for the homopolymers and a selective solvent for the copolymers. We find that the formation of copolymer micelles containing also the insoluble chains allows for an increased solubility of the homopolymers in the solution. In agreement with experiments, we find also that the solubilization power of the micelles, that is, the maximum amount of total homopolymer weight solubilized per unit weight of copolymers in solution, decreases strongly with the homopolymer index of polymerization.  相似文献   

10.
各类多组分聚合物中的特殊相互作用   总被引:16,自引:2,他引:14  
本文以作者实验室的新结果为主,评述了关于向各类多组分聚合物中引入特殊相互作用及其对相客性的影响以及该领域的发展趋势.所讨论的多组分聚合物包括简单共混物、嵌段共混物、互穿网络聚合物、共聚物和均聚物的共混物、离聚物的共混物以及无机粒子和聚合物的复合物等.  相似文献   

11.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

12.
Poly(hydrogenated butadiene-b-styrene) copolymers are very effective emulsifiers for blends of polystyrene and low-density or high-density polyethylene. It is shown that the extent of improvement in mechanical properties is dependent not only on the molecular weight but also on the structure of the diblock copolymer. A comparative study of the morphology and the mechanical behavior of modified low-density polyethylene/polystyrene blends demonstrates that a tapered diblock is more efficient than a pure diblock with the same composition and molecular weight. It is assumed that the unique behavior of the tapered sample results from its particular miscibility characteristics at the blend interface. The tapered copolymer could behave essentially as a solu-bilizing agent for the homopolymers at the interface and provide a “graded” modulus responsible for the improved mechanical response of the material.  相似文献   

13.
The correlation between the morphology and the deformation mechanism in styrene/butadiene block copolymers having modified architecture and in blends with homopolymer polystyrene (hPS) was studied. It was demonstrated that the morphology formation in the block copolymers is highly coupled with their molecular architecture. In particular, the micromechanical behaviour of a star block copolymer and its blends with polystyrene was investigated by using electron microscopy and tensile testing. A homogeneous plastic flow of polystyrene lamellae (thin layer yielding) was observed if the lamella thickness was in the range of 20 nm. The deformation micromechanism switched to the formation of craze-like deformation zones when the average PS lamella thickness changed to about 30 nm and more.  相似文献   

14.
利用DSC和偏光显微镜等手段研究了部分成核剂对聚丙烯均聚物(PP)、低乙烯含量聚丙烯共聚物及聚丙烯/聚乙烯(PP/PE)共混物结晶行为的影响,结果表明所用成核剂对PP和改性PP具有一定的普适性。聚丙烯共聚物中,由于链结构规整性变差,成核剂的作用显得特别突出,而PP/PE共混物中,由于成核剂向PE相迁移而使其对PP结晶的成核效率降低。  相似文献   

15.
The miscibility of a series of styrene/acrylic acid copolymers with various polyacrylate and polymethacrylate homopolymers, as well as a series of styrene/methyl methacrylate copolymers, has been investigated. According to the binary interaction model, the miscibility diagram for styrene/acrylic acid copolymers with styrene/methyl methacrylate copolymers indicates that acid and ester groups interact endothermically. The phase behavior of the homopolymers also implies this. The analysis ignores the association and self-association observed for the polymer blends and the low-molecular-weight analogs used to model them. The heat of mixing of low-molecular-weight analogs depended greatly on both composition and acid structure.  相似文献   

16.
Poly-[3′,4′-dimethoxyacrylophenone], poly-4′-phenylacrylophenone, poly-2′-acrylonaphthone and copolymers of acrylophenone monomers with styrene and methyl methacrylate were prepared. Quantum yields of main chain scission in chlorobenzene by 313 nm radiation were 103 times lower for all homopolymers and copolymers studied than for polyacrylophenone. The emission spectra of the polymers, copolymers and model compounds were taken for films at 77 K. The 3′,4′-dimethoxyacrylophenone, 4′-phenylacrylophenone and 2′-acrylonaphthone structural units exhibited poorly resolved emission spectra in homopolymer, copolymer and model compound. No difference in the emission spectra of films and dispersed homopolymer or copolymer in a poly(methyl methacrylate) matrix was observed. The decay of the emission of all homopolymers and copolymers under study was exponential, the life-time exceeding 0.20 sec.  相似文献   

17.
Monte Carlo simulations deal with crudely simplified but well-defined models and have the advantage that they treat the statistical thermodynamics of the considered model exactly (apart from statistical errors and problems due to finite size effects). Therefore, these simulations are well suited to test various approximate theories of block copolymer ordering, e.g. the self-consistent field theory. Recent examples of this approach include the study of block copolymer ordering at melt surfaces and confinement effects in thin films, adsorption of block copolymers at interfaces of unmixed homopolymer blends, the phase behavior of ternary mixtures of two homopolymers and their block copolymer, and micelle formation in selective solvents.  相似文献   

18.
含联苯结构聚醚醚酮酮共聚物和共混物的制备及性能研究   总被引:8,自引:0,他引:8  
聚醚醚酮(PEEK)是八十年代初投入市场的全芳香结构热塑性耐高温特种工程塑料,它的7’。一143“C,Tm一334C“‘,最大结晶度为48%,典型制品结晶度为20%~30%[”.PEEK可用通常的设备成型,其制件、纤维、涂料及复合材料在电子电器、机械设备、交通运输、宇航、原子能工程、军事等领域有广泛的用途[’j.聚醚醚酮酮(PEEKK)是继PEEK之后,由德国Hoechst公司开发出来的又一种全芳香结构热塑性耐高温特种工程塑料[‘j.为了研究该类聚合物的结构和性能的关系,我们在实验室中合成了PEEKK和含联苯结构聚醚醚酮酮(PE-*…  相似文献   

19.
The phase separation behavior of ternary blends of two homopolymers, PMMA and PS, and a block copolymer of styrene and methylmethacrylate, P(S-b-MMA), was studied. The homopolymers were of equal chain length and were kept at equal amounts. Two copolymers were used with blocks of equal length, which exceeded or equaled that of the homopolymer chains. Varied was the copolymer contentf. Films were cast from toluene, which is a nonselective solvent. The morphologies of the cast films were compared with the structure of the critical fluctuations in solution, which were calculated in mean field approximation. The axis of blend compositionsf can be divided into parts of dominating macrophase and microphase separation. Above a transition concentrationf o, all copolymer chains are found in phase interfaces. Belowf o, part of them form micelles within the homopolymer phases.  相似文献   

20.
α, β-Bis(hydroxyphenol) tetramethyl bisphenol-A polysulfone (PSUT) was synthesized by two different methods, one using a strong base, the other using a weak base. The bifunctional polysulfone containing tetramethyl bisphenol-A chain ends was exploited as a model telechelic that can be used for the preparation of ABA triblock copolymers containing poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as A segments and PSUT as B segments. PSUT and PPO were incorporated into triblock copolymers by an oxidative coupling copolymerization of PSUT with 2,6-dimethylphenol or by the redistribution of PPO in the presence of PSUT. The mechanism of block copolymerization is discussed. DSC studies indicate that short immiscible PPO and PSUT segments incorporated into a triblock copolymer do not exhibit phase separation. Polymer blends of the PPO–PSUT–PPO triblock copolymers with PPO homopolymer were analyzed by DSC. Both miscible and phase-separated blends can be prepared depending on the molecular weight of both PPO homopolymer and of the PPO segment present in the triblock copolymer. Polymer blends of the PPO–PSUT–PPO triblock copolymer with PSUT were miscible at all compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号