首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite element-based formulation for modelling the dynamic behavior of a rotating flexible shaft supported by a flexible support structure is presented. The coupling effect between the rigid-body rotation and the flexible deformation of the shaft is considered and represented by non-linear coupling terms in the mass matrix and forcing vectors in the global system of equations. The rigid-body rotation is treated as one of the degrees of freedom (d.o.f.) of the entire system. The interaction between the rotating shaft and the flexible support is modelled by either linear or non-linear springs distributed around the circumference of the shaft. The coupling between the flexibility of the shaft and the flexibility of the support structure are considered. The flexible d.o.f. of both the shaft and the support structure are represented as a set of retained and internal d.o.f. of a Craig-Bampton formulation. An additional transformation is performed when the rigid-body d.o.f. is coupled with the internal and the retained d.o.f. in a Craig-Bampton basis. The equations of motion are solved in the time domain using a modified Newmark method for time integration, in which the Newton-Raphson method is used for handling the non-linear behavior within each time step. Analyses are performed to validate the new development for different combinations of load condition, spring type, and rigid-body rotation.  相似文献   

2.
In this paper, a novel inertia-capacitance (IC) beam substructure formulation based on the IC-field presentation from the bond graph method is developed. The IC beam provides a modular, systematic and graphical approach to beam modeling. These features allow the modeler to focus more on the modeling and less on the mathematics. As such, the IC beam is proposed as an alternative to the many existing types of beam models available in the literature. The IC beam is formulated in the center of mass body fixed coordinate system allowing for easy interfacing in a multibody system setting. This floating frame approach is also computationally cheap. Elastic deformations in the IC beam are assumed to be small and described by modal superposition. The formulation couples rigid body and elastic deformations in a nonlinear fashion. The formulation is also compact and efficient. Detailed derivations for a two-dimensional planar IC beam with bending modes are presented. A modal acceleration method based on the decoupling of bending modes is proposed for use in the IC beam. The rotating beam spin-up maneuver problem is solved. The Karnopp-Margolis method is applied to ensure complete integral causality for an efficient numerical system. Geometric substructuring technique is applied to model large deflections. The IC beam is shown to be capable of solving the rotating beam problem accurately and efficiently.  相似文献   

3.
方建士  章定国* 《物理学报》2013,62(4):44501-044501
对固结于旋转刚环上内接柔性梁的刚柔耦合动力学特性进行了研究. 在精确描述柔性梁非线性变形基础上, 利用Hamilton变分原理和假设模态法, 在计入柔性梁由于横向变形而引起的轴向变形二阶耦合量的条件下, 推导出一次近似耦合模型. 忽略柔性梁纵向变形的影响,给出一次近似简化模型,引入无量纲变量, 对简化模型做无量纲化处理. 首先分析在非惯性系下内接悬臂梁的动力学响应, 并与外接悬臂梁进行比较; 其次研究内接悬臂梁的稳定性;最后分析内接悬臂梁失稳临界转速的收敛性. 研究发现, 与外接悬臂梁存在动力刚化效应不同,内接悬臂梁存在着动力柔化效应; 给出了内接悬臂梁无条件稳定的临界径长比以及失稳的临界转速的计算方法; 若第一阶固有频率随转速增大而减小,则该内接悬臂梁处于有条件稳定; 随着模态截断数的增加,内接悬臂梁失稳的临界转速减小且有收敛值. 关键词: 内接悬臂梁 一次近似简化模型 动力柔化 临界转速  相似文献   

4.
A continuous system has an infinite number of degrees of freedom (n.d.o.f.) in a dynamic analysis. The dynamic stiffness method is able to produce an infinite number of natural modes with use of only a finite number of co-ordinates. The associated modal analysis is the only widely applicable approximate method for computing the response without discretizing the continuous system by methods such as the finite element method, in which the infinite n.d.o.f. is not retained. However, this modal analysis converges very slowly as the number of modes is increased if the loading distribution does not follow the patterns of the first few modes. A method is suggested in this paper to accelerate the convergence. A mixed mass matrix is introduced according to the reciprocal theorem to evaluate the initial transient while retaining the infinite n.d.o.f. with a fininte number of co-ordinates. Explicit formulae are given for space frames.  相似文献   

5.
Some efficient strategies for the active control of vibrations of a beam structure using piezoelectric materials are described. The control algorithms have been implemented for a cantilever beam model developed using finite element formulation. The vibration response of the beam to an impulse excitation has been calculated numerically for the uncontrolled and the controlled cases. The essence of the method proposed is that a feedback force in different modes be applied according to the vibration amplitude in the respective modes i.e., modes having lesser vibration may receive lesser feedback. This weighting may be done on the basis of either displacement or energy present in different modes. This method is compared with existing methods of modal space control, namely the independent modal space control (IMSC), and modified independent modal space control (MIMSC). The method is in fact an extension of the modified independent space control with the addition that it proposes to use the sum of weighted multiple modal forces for control. The proposed method results in a simpler feedback, which is easy to implement on a controller. The procedure is illustrated for vibration control of a cantilever beam. The analytical results show that the maximum feedback control voltage required in the proposed method is further reduced as compared to existing methods of IMSC and MIMSC for similar vibration control. The limitations of the proposed method are discussed.  相似文献   

6.
范纪华  章定国 《物理学报》2014,63(15):154501-154501
在旋转柔性梁变形场描述中,引入Bezier插值离散方法.首先构建旋转运动悬臂梁物理模型,接着采用第二类Lagrange动力学方程和Bezier插值离散方法,在计入柔性梁横向弯曲变形引起的纵向缩短的情况下,推导了旋转柔性梁的刚柔耦合动力学方程,并编制旋转柔性梁的动力学仿真软件,然后通过仿真算例对系统的动力学问题进行研究.最后将仿真结果与有限元法、假设模态法进行分析比较,验证了提出的Bezier插值离散方法的正确性,并得出Bezier插值离散法的计算效率较高;计算精度符合工程实际需要,高速时计算精度大于假设模态法;Bezier插值离散方法在处理大柔性问题时比假设模态法合理.因此在多体系统动力学领域具有优良性能和应用价值的Bezier插值离散方法将具有推广价值.  相似文献   

7.
This paper describes an analytical calculation of break-out noise from a rectangular plenum with four flexible walls by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise from rectangular plenums is important and the coupling between acoustic waves within the plenum and structural waves in the flexible plenum walls plays a critical role in prediction of the transverse transmission loss. The first step in breakout noise prediction is to calculate the inside plenum pressure field and the normal flexible plenum wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. In the impedance-mobility compact matrix (IMCM) approach, it is presumed that the coupled response can be described in terms of finite sets of the uncoupled acoustic subsystem and the structural subsystem. The flexible walls of the plenum are modeled as an unfolded plate to calculate natural frequencies and mode shapes of the uncoupled structural subsystem. The second step is to calculate the radiated sound power from the flexible walls using Kirchhoff-Helmholtz (KH) integral formulation. Analytical results are validated with finite element and boundary element (FEM-BEM) numerical models.  相似文献   

8.
和兴锁  李雪华  邓峰岩 《物理学报》2011,60(2):24502-024502
针对大范围运动规律为未知的刚-柔耦合系统研究其动力学特性.利用有限元方法对柔性梁进行离散,采用Lagrange方程建立平面柔性梁的刚-柔耦合动力学方程,研究在大范围运动为自由情况下,平面柔性梁的大范围运动和变形运动的相互耦合机理,比较零次模型、一次耦合模型及精确模型的差异,探讨各种模型的适用性. 关键词: 平面柔性梁 刚-柔耦合系统 动力学特性 分析与仿真  相似文献   

9.
和兴锁  邓峰岩  王睿 《物理学报》2010,59(3):1428-1436
研究具有大范围运动和非线性变形的空间柔性梁的有限元动力学建模.首先在精确描述空间柔性梁的非线性变形的基础上,采用有限元方法对梁结构进行离散,导出其动能、势能及外力对应的广义力,然后利用Lagrange方程建立了空间柔性梁的精确动力学方程.该方程在原有一次耦合模型的基础上,增加了新的表征纵向、横向、侧向弯曲变形,以及扭转变形的耦合项,同时包含了变形运动与大范围运动之间的相互耦合项.本建模方法和所得结论可为以后空间柔性梁的动力学特性分析作以参考.  相似文献   

10.
A new general formulation that is applicable to the damaged, linear elastic structures ‘unified framework’ is used to obtain analytical expressions for natural frequencies and mode shapes. The term mode shapes is used to mean the displacement modes, the section rotation modes, the sectional bending strain modes and sectional shear strain modes. The formulation is applicable to damaged elastic self-adjoint systems. The formulation has two unique aspects: First, the theory is mathematically rigorous since no assumptions are made regarding the physical behavior at a damage location, therefore there is no need to substitute the damage with a hypothetical elastic element such as a spring. Since the beam is not divided at the damage location, rather than an 8 by 8, only a 4 by 4 matrix is solved to obtain the natural frequencies and mode shapes. Second, the inertia effects due to damage which have till now been neglected by researchers are accounted for. The formulation uses a geometric damage model, perturbation of mode shapes and natural frequencies, and a modal superposition technique to obtain and solve the governing differential equation. Timoshenko beam theory is then taken as an example, and its results are compared with results using Euler–Bernoulli beam theory and finite element models. The range of applicability of the two theories is ascertained for damage characteristics such as depth and extent of damage and beam characteristics such as slenderness ratio and Poisson?s ratio. The paper considers rectangular notch like non-propagating damage as an example of the damage.  相似文献   

11.
Structure borne vibration and noise in an automobile are often explained by representing the full vehicle as a system of elastically coupled beam structures representing the body, engine cradle and body subframe where the engine is often connected to the chassis via inclined viscoelastic supports. To understand more clearly the interactions between a beam structure and isolators, this article examines the flexural and longitudinal motions in an elastic beam with intentionally inclined mounts (viscoelastic end supports). A new analytical solution is derived for the boundary coupled Euler beam and wave equations resulting in complex eigensolutions. This system is demonstrated to be self-adjoint when the support stiffness matrices are symmetric; thus, the modal analysis is used to decouple the equations of motion and solve for the steady state, damped harmonic response. Experimental validation and computational verifications confirm the validity of the proposed formulation. New and interesting phenomena are presented including coupled rigid motions, modal properties for ideal angled roller boundaries, and relationships between coupling and system modal loss factors. The ideal roller boundary conditions when inclined are seen as a limiting case of coupled longitudinal and flexural motions. In particular, the coupled rigid body motions illustrate the influence of support stiffness coupling on the eigenvalues and eigenfunctions. The relative modal strain energy concept is used to distinguish the contribution of longitudinal and flexural deformation modes. Since the beam is assumed to be undamped, the system damping is derived from the viscoelastic supports. The support damping (for a given loss factor) is shown to be redistributed between the system modes due to the inclined coupling mechanisms. Finally, this article provides valuable insight by highlighting some technical issues a real-life designer faces when balancing modeling assumptions such as rigid or elastic formulations, proportional or non-proportional damping, and coupling terms in multidimensional joint properties.  相似文献   

12.
The effect of misalignment on the stability of two rotors connected by a flexible mechanical coupling subjected to angular misalignment is examined. The study performed is to understand the effect of angular misalignment on the stability of rotating machinery. The dimensionless stability criteria of the non-linear system of differential equations of two misaligned rigid rotors are derived using Liapunov's direct method. A rigid disk is attached at the middle of each rotor, where the rotor-disk assembly is mounted on two hydrodynamic bearings with four stiffness and four damping coefficients. Sets of dimensionless conditions for sufficient whirl stability of the two misaligned rotors are derived. The stability conditions are presented in graphical form for deeper understanding of the effect of the flexible mechanical coupling stiffness and angular misalignment on rotating machinery stability. The results show that an increase in angular misalignment or mechanical coupling stiffness terms leads to an increase of the model stability region.  相似文献   

13.
A comprehensive dynamic model of a rotating hub–functionally graded material (FGM) beam system is developed based on a rigid–flexible coupled dynamics theory to study its free vibration characteristics. The rigid–flexible coupled dynamic equations of the system are derived using the method of assumed modes and Lagrange's equations of the second kind. The dynamic stiffening effect of the rotating hub–FGM beam system is captured by a second-order coupling term that represents longitudinal shrinking of the beam caused by the transverse displacement. The natural frequencies and mode shapes of the system with the chordwise bending and stretching (B–S) coupling effect are calculated and compared with those with the coupling effect neglected. When the B–S coupling effect is included, interesting frequency veering and mode shift phenomena are observed. A two-mode model is introduced to accurately predict the most obvious frequency veering behavior between two adjacent modes associated with a chordwise bending and a stretching mode. The critical veering angular velocities of the FGM beam that are analytically determined from the two-mode model are in excellent agreement with those from the comprehensive dynamic model. The effects of material inhomogeneity and graded properties of FGM beams on their dynamic characteristics are investigated. The comprehensive dynamic model developed here can be used in graded material design of FGM beams for achieving specified dynamic characteristics.  相似文献   

14.
This paper contains a brief review of the formulation of the finite element method for structural-acoustic analysis of an enclosed cavity, and illustrations are given of the application of this analytical method at General Motors Corporation to investigate the acoustics of the automobile passenger compartment. Low frequency noise in the passenger compartment (in approximately the 20–200 Hz frequency range) is of primary interest, and particularly that noise which is generated by the structural vibration of the wall panels of the compartment. The topics which are covered in the paper include the computation of acoustic modes and resonant frequencies of the passenger compartment, the effect of flexible wall panels on the cavity acoustics, the methods of direct and modal coupling of the structural and acoustic vehicle systems, and forced vibration analysis illustrating the techniques for computing panel-excited noise and for identifying critical panels around the passenger compartment. The capabilities of the finite element method are illustrated by applications to the production automobile, and experimental verifications of the various techniques are presented to illustrate the accuracy of the method.  相似文献   

15.
A tire is modeled as a toroidal membrane under internal pressure and mounted on a rim, to investigate its free vibration characteristics using a 12 d.o.f. rectangular membrane finite element. Such a modeling is valid if the tire is assumed to be incapable of supporting any weight in the absence of internal pressure. To verify the formulations of the membrane finite element, a flat rectangular membrane subject to in-plane loads and a circular cylindrical membrane under internal pressure are first analyzed. Analytical solutions for these cases are also derived. The analytical and numerical results are in good agreement. A toroidal membrane under internal pressure, assumed to model a low pressure tire, is studied next. Both the analytical derivation and the finite element solutions are presented. For the analytical solution the equations of motion yield a complicated differential equation for which an approximate solution is obtained by assuming that the parallel circle radius is constant as in the case of a bycycle wheel. The finite element solution successfully predicts the symmetrical and the twisting modes of vibration documented by other researchers, and is also in good agreement with the analytical results. The present formulations are useful to obtain a good first approximation of the free vibration response of a tire.  相似文献   

16.
The dynamic behavior and dynamic instability of the rotating sandwich beam with a constrained damping layer subjected to axial periodic loads are studied by the finite element method. The influences of rotating speed, thickness ratio, setting angle and hub radius ratio on the resonant frequencies and modal system loss factors are presented. The regions of instability for simple and combination resonant frequencies are determined from the Mathieu equation that is obtained from the parametric excitation of the rotating sandwich beam. The regions of dynamic instability for various parameters are presented.  相似文献   

17.
In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.  相似文献   

18.
Drillstring vibration is one of the major causes for a deteriorated drilling performance. Field experience revealed that it is crucial to understand the complex vibrational mechanisms experienced by a drilling system in order to better control its functional operation and improve its performance. Sick-slip oscillations due to contact between the drilling bit and formation is known to excite severe torsional and axial vibrations in the drillstring. A dynamic model of the drillstring including the drillpipes and drillcollars is formulated. The equation of motion of the rotating drillstring is derived using Lagrangian approach in conjunction with the finite element method. The model accounts for the torsional-bending inertia coupling and the axial-bending geometric nonlinear coupling. In addition, the model accounts for the gyroscopic effect, the effect of the gravitational force field, and the stick-slip interaction forces. Explicit expressions of the finite element coefficient matrices are derived using a consistent mass formulation. The generalized eigenvalue problem is solved to determine modal transformations, which are invoked to obtain the reduced-order modal form of the dynamic equations. The developed model is integrated into a computational scheme to calculate time-response of the drillstring system in the presence of stick-slip excitations.  相似文献   

19.
Analysis and control of vibrations of agricultural machines to improve machine performance and vibration comfort of the operator is a major concern of manufacturers these days. In this paper, an analytical method to build the linearized equations of motion of an elastic tree structured mechanism, is presented. The method is based on the principle of virtual work resulting in a set of parameterized linear equations that are functions of the mechanical parameters and the geometry and the interconnection structure of different bodies in the mechanism. The rigid-body motions of the mechanical system are represented by Lagrangian generalized co-ordinates while elastic deformations are described by nodal co-ordinates from a finite element formulation. Explicit expressions for external distributed and concentrated forces and internal concentrated forces acting on the mechanism are given.  相似文献   

20.
The structural acoustic coupling characteristics of a rectangular enclosure con- sisting of two elastic supported flexible plates and four rigid plates are analyzed.A general formulation considering the full coupling between the plates and cavity is developed by using Hamiltonian function and Rayleigh-Ritz method.By means of continuous distributions of ar- tificial springs along boundary of flexible plates,a wide variety of boundary conditions and structure joint conditions are considered.To demonstrate the validity of the analytical model, the responses of sound pressure in the cavity and plate velocity are worked out.The analytical results coincides well with Kim's experimental results.The result is satisfactory.Finally,an- alytical results on the structure vibration and the sound field inside the cavity are presented. These results indicate that the coupling of the combined structure is relatively weak,so the internal cavity sound is controlled by plate directly excited,and the translational stiffness affects the sound more than the rotational stiffness does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号