首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
含三聚氰胺多孔材料分层复合介质吸声特性*   总被引:1,自引:1,他引:0       下载免费PDF全文
白聪  沈敏 《应用声学》2019,38(1):76-84
三聚氰胺泡沫材料是一种具有高开孔率的多孔材料,具备优良的吸音、防火隔热及环保性能,可以作为吸声材料与弹性板、空腔介质形成复合结构,在建筑、航空、交通工具等工程领域有广泛的应用。该文基于Biot理论和分层介质在交界面处的不同边界条件,建立非均匀复合介质背衬刚性壁面结构的理论声学模型,详细分析了多孔材料布局对复合结构吸声特性的影响。该文理论模型计算的结果与阻抗实验得到的垂直入射吸声系数基本一致,验证了理论模型的正确性。结果表明:在多孔材料前面增加空气层可以改善高频吸声特性;在多孔材料后面增加空气层可以改善复合结构低频吸声特性。通过合理配置多孔材料,可以在应用需求频段上达到满意的吸声效果。  相似文献   

2.
在传统单一孔隙率多孔材料中引入宏观尺度的周期性梯度穿缝结构设计,构造出梯度穿缝型双孔隙率多孔材料,其包含多孔材料基体微孔尺度与穿缝尺度两个尺度。采用分层等效的理论建模方法,将复杂梯度渐变问题变为多层均匀等效层叠加问题。针对不同特征尺寸的多孔材料薄层,分别采用低、高两种渗透率对比度双孔隙率理论,给出了其等效密度和动态压缩系数,再应用传递矩阵方法得到了相邻薄层之间的声压和质点速度传递关系并求得其表面声阻抗,从而建立了梯度穿缝型双孔隙率多孔材料的吸声理论模型。发展了多尺度材料声学有限元数值模型,在所考虑的100~3000 Hz频段范围内数值模拟结果完全吻合理论模型结果。理论与模拟分析了多尺度结构参数对双孔隙率多孔材料吸声性能的影响,结果表明引入多尺度梯度结构设计能够显著提高单一孔隙率多孔材料的吸声性能,且穿缝尺度比穿缝梯度影响更为显著;精细数值模拟获得的声压和能量密度分布云图揭示了多尺度结构设计的吸声增强机制。该工作可用于指导双孔隙率多孔材料的多尺度结构设计,从而提高多孔材料的中低频吸声性能。   相似文献   

3.
A gradiently slit-perforated double-porosity material is proposed by introducing macro-scale periodic gradient slit-perforations into traditional porous materials with singleporosity.This material is one kind of multiscale material since it includes two scales of matrix micro-pore size and slit-perforation size.A theoretical model is developed for the sound absorption of the gradiently slit-perforated double-porosity material.In the model,the material is divided into lots of thin layers and each layer is approximated to be straight slit-perforated material.The equivalent density and dynamic compressibility of each thin layer are given by using the low or high permeability contrast double-porosity theory.Then the sound pressure and particle velocity relations between adjacent thin layers are obtained by employing the transfer matrix method.Finally,the surface acoustic impedance and the sound absorption of the gradiently slit-perforated porous material can be calculated.A finite element model is further established to validate the accuracy of the theoretical model.In the considered frequency range of 100-3000 Hz,the simulation results agree well with theoretical results.The influence of multiscale structural parameters on the sound absorption performance of the porous materials is analyzed theoretically and numerically.It is proved that the multiscale structure design can significantly improve the sound absorption performance of porous materials.Compared to the slit-perforation gradient,the slit-perforation width plays a more significant influence on sound absorption.The sound absorption enhancement mechanism of the multiscale structure design is revealed by the analysis of the sound pressure and energy dissipation distributions in the material.This work provides a multiscale structural design method for improving the sound absorption performance of traditional porous materials at broadband frequency.  相似文献   

4.
Acoustic impedance of an absorbing interface is easily introduced in boundary element codes provided that a local reaction is assumed. But this assumption is not valid in the case of porous road surface. A two-domain approach was developed for the prediction of sound propagation above a porous layer that takes into account the sound propagation inside the porous material. The porous material is modeled by a homogeneous dissipative fluid medium. An alternative to this time consuming two-domain approach is proposed by using the grazing incidence approximate impedance in the traditional single-domain boundary element method (BEM). It can be checked that this value is numerically consistent with the surface impedance calculated at the interface from the pressure and surface velocity solutions of the two-domain approach. The single-domain BEM introducing this grazing incidence impedance is compared in terms of sound attenuation with analytical solutions and two-domain BEM. The comparison is also performed with the single-domain BEM using the normal incidence impedance, and reveals a much better accuracy for the prediction of sound propagation above a porous interface.  相似文献   

5.
Hosten B  Castaings M 《Ultrasonics》2003,41(7):501-507
The surface impedance matrices in stratified plates made of fluid layers and/or anisotropic absorbing solid layers link the particle velocity field to the stress field at any interface. A surface impedance matrix represents the impedance at a given interface of all the layers located between that interface and one boundary of the medium. For each interface, there are two surface impedance matrices, each one corresponding to one boundary. This notion simplifies the computations of the modal solutions. The number of elements in the matrices involved in the computations is divided by a factor of four in comparison to usual matrix methods. This paper describes the method and presents examples to illustrate its interests and its efficiency where other techniques fail, for instance in the case of modes possessing energy in layers embedded in the structure.  相似文献   

6.
《Solid State Ionics》2006,177(19-25):1955-1959
An impedance model is developed for a porous oxygen electrode on top of a solid oxide conductor, taking into account adsorption and surface transport along the pore walls, interfacial diffusion and reaction along the interface, as well as current distribution (2D) in the electrolyte. All parameters are in principal measurable. Simulated impedance spectra typically exhibit two semicircles, one related to the charge transfer reaction at the interface (high frequencies), and one related to mass transfer limitations (low frequencies). The resolution of these two semicircles, however, depend on the relative contributions of these two processes to the overall potential losses, and the magnitude of the interfacial capacitance relative to the other kinetic and transport parameters, as well as geometrical parameters.  相似文献   

7.
A theory which predicts the acoustical characteristics of rigid porous materials in terms of four physical parameters is used to provide impedance versus frequency models for various types of ground surface. It is found possible to obtain tolerable agreement with measurements of surface normal impedance for grass-covered ground, bare ground and layered forest floor when measured values of flow resistivity and porosity and estimated values of the other two parameters are used. The agreement with measured acoustical data is shown to be superior to that obtainable with the single-parameter, semi-empirical model that is widely used to predict ground effect even when the single parameter is adjusted for best-fit. A low frequency/high flow resistivity approximation is derived in a form that requires the adjustment of only a single parameter when fitting impedance versus frequency data. This model predicts that the real part of the surface normal impedance, or resistance, and imaginary part, or reactance, are equal and decrease as the inverse square root of frequency. The low frequency/high flow resistivity approximation makes possible the derivation of a two-parameter impedance versus frequency model for a medium with a porosity that decreases exponentially with depth. If the two parameters are considered to be adjustable for best-fit, then some measurements of surface impedance are found to be explicable by means of such a model. The low frequency/high flow resistivity approximation is used, together with the assumption of layer thickness small compared with internal wavelength, to derive another simple two-parameter model for grounds that behave acoustically as thin hard-backed porous layers. Examples of the validity of this model are provided. Both of the two-parameter models predict values of reactance which are greater than those of resistance over the audio-frequency range. Methods of adjusting the two parameters of each model in fitting short-range excess-attenuation data are suggested as alternatives to the single-parameter method, and as the basis for predicting ground effect at long range and low frequencies.  相似文献   

8.
界面层对层状各向异性复合结构中Lamb波的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
张海燕  刘镇清  马小松 《物理学报》2003,52(10):2492-2499
建立了各向异性界面层的弹簧模型,并将其应用于分析层状复合媒质的全局矩阵技术中.其 引入的机理是全局矩阵的程序结构、各层矩阵的排列不至于遭受大的破坏.因此,把弹簧界 面作为一个“材料层”.该层的材料常数用劲度常数来描述,其层厚为零.把该层放在全局矩 阵适当的位置而使系统中的其他层不发生任何变化.数值示例显示了刚性联接、滑移联接、 完全脱层三种不同界面条件下双层各向异性复合结构中Lamb波的频散特征,并对刚性联接和 滑移联接时质点沿板厚方向的位移分布进行了比较. 关键词: 各向异性界面 弹簧模型 全局矩阵 兰姆波频散  相似文献   

9.
多孔弹性介质三层夹心板的隔声性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈卫松  邱小军 《应用声学》2008,27(2):118-124
应用Biot关于流体饱和多孔弹性介质的声传播理论,采用传递矩阵的分析方法,就复合多孔弹性材料夹心三层板在不同结构情况下的隔声性能进行了理论研究和实验分析,并与同等条件下双层夹心板的隔声性能进行了比较。数值计算和实验结果均表明,与双层夹心板相比,三层夹心板在中高频段隔声性能有明显优势,但低频段隔声性能有一定程度上的下降。研究还表明不同结构的复合三层夹心板在隔声效果上也各有特色。  相似文献   

10.
A method for evaluating the acoustical properties of homogeneous and isotropic porous materials that may be modeled as fluids having complex properties is described here. To implement the procedure, a conventional, two-microphone standing wave tube was modified to include: a new sample holder; a section downstream of the sample holder that accommodated a second pair of microphone holders and an approximately anechoic termination. Sound-pressure measurements at two upstream and two downstream locations were then used to estimate the two-by-two transfer matrix of porous material samples. The experimental transfer matrix method has been most widely used in the past to measure the acoustical properties of silencer system components. That procedure was made more efficient here by taking advantage of the reciprocal nature of sound transmission through homogeneous and isotropic porous layers. The transfer matrix of a homogeneous and isotropic, rigid or limp porous layer can easily be used to identify the material's characteristic impedance and wave number, from which other acoustical quantities of interest can be calculated. The procedure has been used to estimate the acoustical properties of a glass fiber material: good agreement was found between the estimated acoustical properties and those predicted by using the formulas of Delany and Bazley.  相似文献   

11.
The influence of interface porosity on the wetting properties of colloid-polymer mixtures is studied within density functional theory for the Asakura-Oosawa-Vrij model at the surface of a quenched hard-sphere matrix. While the porosity hardly changes the location of the transition from partial to complete wetting at colloidal bulk gas-liquid coexistence, the onset of wetting, as signaled by the first discontinuous layering transition, can be efficiently controlled by tailoring the porosity. We furthermore find that the penetrability of the porous interface induces complete drying into the matrix upon approaching capillary coexistence.  相似文献   

12.
To get desired sound absorption,we proposed a novel periodic composite structure comprised of micro-perforated plates(MPPs),porous materials and air cavities.The composite structure is then solved using an equivalent circuit model,with equivalent fluid porous model and Maa's theory.Distributed four-pole elements are used to handle structures which are not compact compared to the sound wavelength.The model procedures are validated and confirmed as satisfactory by published results and finite-element results.Analysis conducted on a single layer shows that,compared with traditional MPP,the porous addition can increase sound absorption in the low-to-medium frequency range;however,the advantage of porous materials in the high-frequency range is lost.Meanwhile,by arranging the porous materials in parallel and controlling their filling ratios,the absorption curve of the composite structure can be tuned.As to periodic composite structures,it is found that the influence of layer number N is mainly in the low-to-medium frequency range.When N varies,the half-absorption bandwidth increases over 40%(≥380 Hz) compared with a single layer.Compared with multi-layered MPPs,N=2 and N=4 produce an increase of bandwidth by 50%(≥400 Hz) and 30%(≥300 Hz) respectively.As N increases,the sound absorption is better but the enhancement weakens as it tends to the limit of the composite structure.These results show the potential enhancements that can be made to the traditional MPP,which can benefit the research on wideband noise reduction in the low-to-medium frequency range.  相似文献   

13.
乔厚  何锃  赵超  江雯  彭伟才 《声学学报》2020,45(2):258-266
为获得理想吸声性能,提出了一种由多孔材料,微穿孔板及空气层构成的周期复合结构,并利用微穿孔板理论和等效流体多孔材料模型,结合等效电路法进行了分析。结果表明,复合结构显著增强了微穿孔板结构的中低频吸声性能,但其高频性能较单独多孔材料差;采用合适填充比例并联布置多种多孔材料,可适当调节复合结构的吸声性能。此外,周期复合结构的堆叠层数N≥1时,相对单层复合结构,中低频吸声带宽提升至少40%(≥380 Hz);相对多层微穿孔板结构,增大N对相应中低频吸声带宽提升不低于30%(≥300 Hz)。总体上,文中周期复合结构可显著增强传统微穿孔结构的中低频性能,是一种简单高效的中低频宽频降噪方案。   相似文献   

14.
It is well known that many porous media such as rocks have heterogeneities at nearly all scales. We applied Biot's poroelastic theory to study the propagation of elastic waves in isotropic porous matrix with spherical inclusions. It is assumed that the heterogeneity dimension exceeds significantly the pore size. Modified boundary conditions on poroelastic interface are used to take into account the surface tension effects. The effective wavenumber is calculated using the Waterman and Truell multiple scattering theory, which relates the effective wave number to the amplitude of the wave field scattered by a single inclusion. The calculations were performed for a medium containing fluid-filled cavities or porous inclusions contrasting in saturating fluid elastic properties. The results obtained show that when we consider elastic wave propagation in poroelastic medium containing soft inclusions, it is necessary to take into account the capillary pressure. The influence of the surface tension depends on the diffraction parameter and it is a maximum in the low frequency range.  相似文献   

15.
It is well known that many porous media such as rocks have heterogeneities at nearly all scales. We applied Biot's poroelastic theory to study the propagation of elastic waves in isotropic porous matrix with spherical inclusions. It is assumed that the heterogeneity dimension exceeds significantly the pore size. Modified boundary conditions on poroelastic interface are used to take into account the surface tension effects. The effective wavenumber is calculated using the Waterman and Truell multiple scattering theory, which relates the effective wave number to the amplitude of the wave field scattered by a single inclusion. The calculations were performed for a medium containing fluid-filled cavities or porous inclusions contrasting in saturating fluid elastic properties. The results obtained show that when we consider elastic wave propagation in poroelastic medium containing soft inclusions, it is necessary to take into account the capillary pressure. The influence of the surface tension depends on the diffraction parameter and it is a maximum in the low frequency range.  相似文献   

16.
L Wang  S I Rokhlin 《Ultrasonics》2001,39(6):413-424
The numerical instability problem in the standard transfer matrix method has been resolved by introducing the layer stiffness matrix and using an efficient recursive algorithm to calculate the global stiffness matrix for an arbitrary anisotropic layered structure. For general anisotropy the computational algorithm is formulated in matrix form. In the plane of symmetry of an orthotropic layer the layer stiffness matrix is represented analytically. It is shown that the elements of the stiffness matrix are as simple as those of the transfer matrix and only six of them are independent. Reflection and transmission coefficients for layered media bounded by liquid or solid semi-spaces are formulated as functions of the total stiffness matrix elements. It has been demonstrated that this algorithm is unconditionally stable and more efficient than the standard transfer matrix method. The stiffness matrix formulation is convenient in satisfying boundary conditions for different layered media cases and in obtaining modal solutions. Based on this method characteristic equations for Lamb and surface waves in multilayered orthotropic media have been obtained. Due to the stability of the stiffness matrix method, the solutions of the characteristic equations are numerically stable and efficient. Numerical examples are given.  相似文献   

17.
通过对两种异质结(金属-光子晶体异质结和光子晶体异质结)进行理论计算发现,由两种高反射材料(如负介电常数材料、光子晶体禁带材料)构成的异质结中,存在高透射的局域界面模,并且这种局域界面模的存在与零阻抗条件相关.同时,实验制作了一种金属-光子晶体异质结结构,并在近红外波段观察到该局域界面模的存在.  相似文献   

18.
黄凌志  肖勇  温激鸿  杨海滨  温熙森 《物理学报》2015,64(15):154301-154301
在水下结构表面敷设去耦覆盖层是降低其声辐射的有效途径. 为了深入分析一种含横向无限长空腔的覆盖层的去耦机理, 本文将其等效为均匀介质, 建立了敷设这种覆盖层的单向基体板在线激励下的声辐射模型, 验证了计算模型的有效性, 并利用计算模型对含横向空腔覆盖层的去耦机理进行了分析. 研究结果表明: 基体板-覆盖层接触面的能量流以纵波能量为主, 而横波能量很小, 因而计算覆盖层的去耦特性时可以忽略横波的作用; 和均匀覆盖层相比, 横向空腔型覆盖层在中高频段极大地增强了基体板的力阻抗, 从而更有效地抑制了基体板的振速; 此外, 和均匀覆盖层相比, 横向空腔型覆盖层和水的阻抗失配更大, 使其在中高频具有良好的振动传递损失特性. 因此, 总体而言, 含横向空腔的覆盖层相比均匀覆盖层具有更好的中高频去耦性能.  相似文献   

19.
基于高速列车减振降噪需求,本文应用Biot提出的多孔弹性介质声传播理论,采用传递矩阵法理论推导了典型分层结构的隔声量计算公式,给出了空气层与多孔材料对分层复合结构隔声特性的影响。将传递矩阵与遗传算法相结合,对特定中低频段内的复合结构隔声特性进行了优化。研究结果表明:空气层和多孔材料有助于分层复合结构隔声量的提高,特别是空气层对低频隔声有很好的促进作用,另外空气层与多孔材料的分配情况也影响着隔声效果。含有空气层的复合结构在提高隔声量的同时降低了结构的总体重量,实现了高速列车隔声材料低能耗和轻量化的设计目标。  相似文献   

20.
The use of surface-impedance and surface-admittance concepts for analyzing reflection and refraction at an isotropic dielectric interface (first developed about 1938) is extended to include an interface between uniaxial birefringent dielectrics. Total internal reflection and the polarizing (Brewster) angle at an anisotropic interface are shown to be naturally explainable in terms of surface impedance (for TM polarization) and surface admittance (for TE polarization). The allowable modes in an integrated optical uniaxial asymmetric dielectric slab waveguide are also shown to be directly obtainable using the surface impedance/admittance approach. Numerical examples are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号