首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the coupling of lateral and longitudinal vibrations due to the presence of transverse surface crack in a rotor is explored. A crack in a rotor is known to introduce coupling between lateral and longitudinal vibrations. Steady state unbalance response of a cracked rotor with a single centrally situated crack subjected to periodic axial impulses is investigated experimentally. The cracked rotor is excited axially using an electrodynamic exciter at a frequency equal to its bending natural frequency in both non-rotating and rotating conditions. The resulting time domain and frequency domain signals of the cracked rotor are studied. Spectral response of the cracked rotor with and without axial excitation is found to be distinctively different. When excited axially, it shows prominent presence of rotor bending natural frequency. However for an uncracked rotor, the response is similar with or without axial excitation. It is thus proposed that the response of the rotor to axial impulse excitation could be used for more reliable diagnosis of rotor cracks.  相似文献   

2.
Vibration response of misaligned rotors   总被引:3,自引:0,他引:3  
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.  相似文献   

3.
The coupling of longitudinal and bending vibrations of a rotating shaft, due to an open transverse surface crack is investigated. The assumption of the open crack leads to a system with behaviour similar to that of a rotor with dissimilar moments of inertia along two perpendicular directions. The local flexibility due to the presence of the crack can be represented by way of a 6×6 matrix for six degrees of freedom in a short shaft element which includes the crack. This matrix has off-diagonal terms which cause coupling along the directions which are indicated by these terms. Here shear is not considered and three degrees of freedom are used: bending in the two main directions and extension. This leads to a 3×3 stiffness matrix with coupling terms. The undamped free and forced coupled vibration are first considered. The coupling is investigated and the effects of unbalance and gravity are examined. Then damped coupled vibration is considered for free and forced vibration. The existence of coupling between longitudinal and bending vibration due to the crack is a very useful property which, together with the sub-critical resonance due to crack, can form a basis for crack identification in rotating shafts. New and interesting phenomena of coupled transverse and longitudinal motion are presented and discussed.  相似文献   

4.
This paper investigates the coupled bending vibrations of a stationary shaft with two cracks. It is known from the literature that, when a crack exists in a shaft, the bending, torsional, and longitudinal vibrations are coupled. This study focuses on the horizontal and vertical planes of a cracked shaft, whose bending vibrations are caused by a vertical excitation, in the clamped end of the model. When the crack orientations are not symmetrical to the vertical plane, a response in the horizontal plane is observed due to the presence of the cracks. The crack orientation is defined by the rotational angle of the crack, a parameter which affects the horizontal response. When more cracks appear in a shaft, then the coupling becomes stronger or weaker depending on the relative crack orientations. It is shown that a double peak appears in the vibration spectrum of a cracked or multi-cracked shaft.Modeling the crack in the traditional manner, as a spring, yields analytical results for the horizontal response as a function of the rotational angle and the depths of the two cracks. A 2×2 compliance matrix, containing two non-diagonal terms (those responsible for the coupling) serves to model the crack. Using the Euler–Bernoulli beam theory, the equations for the natural frequencies and the coupled response of the shaft are defined. The experimental coupled response and eigenfrequency measurements for the corresponding planes are presented. The double peak was also experimentally observed.  相似文献   

5.
In this paper the vibrational behaviour of a cracked cantilever beam carrying end mass and rotary inertia is investigated. The transverse and axial vibrations of the beam are coupled through the crack model. The values of the ratio between the cracked and uncracked beam natural frequencies, the frequency ratio, are examined and are shown to follow well-defined trends with respect to the crack parameters and end mass and rotary inertia. However, the coupling between the transverse and axial vibrations is shown to be weak for the first two modes for moderate values of crack depth ratio. High crack depth ratios appear to increase the coupling effects. Low aspect ratios are expected to show strong coupling effects and further investigation is recommended using Timoshenko beam theory.  相似文献   

6.
IDENTIFICATION OF MULTIPLE FAULTS IN ROTOR SYSTEMS   总被引:7,自引:0,他引:7  
Many papers are available in the literature about identification of faults in rotor systems. However, they generally deal only with a single fault, usually an unbalance. Instead, in real machines, the case of multiple faults is quite common: the simultaneous presence of a bow (due to several different causes) and an unbalance or a coupling misalignment occurs often in rotor systems. In this paper, a model-based identification method for multiple faults is presented. The method requires the definition of the models of the elements that compose the system, i.e., the rotor, the bearings and the foundation, as well as the models of the faults, which can be represented by harmonic components of equivalent force or moment systems. The identification of multiple faults is made by a least-squares fitting approach in the frequency domain, by means of the minimization of a multi-dimensional residual between the vibrations in some measuring planes on the machine and the calculated vibrations due to the acting faults. Some numerical applications are reported for two simultaneous faults and some experimental results obtained on a test-rig are used to validate the identification procedure. The accuracy and limits of the proposed procedure have been evaluated.  相似文献   

7.
DYNAMICS OF A TWO-CRACK ROTOR   总被引:1,自引:0,他引:1  
The effect of the presence of the single transverse crack on the response of the rotor has been a focus of attention for many researchers. In the present work a simple Jeffcott rotor with two transverse surface cracks has been studied. The stiffness of such a rotor is derived based on the concepts of fracture mechanics. Subsequently, the effect of the interaction of the two cracks on the breathing behavior and on the unbalance response of the rotor is studied. When the angular orientation of one crack relative to the other is varied, significant changes in the dynamic response of the rotor are noticed. A special case of practical importance of a two-crack rotor is one when one of the cracks is assumed to remain open always whereas the other can breathe like a fatigue crack. This simulates a transverse crack in an asymmetric rotor. Effect of orientation of the breathing crack with respect to the open crack on the dynamic response is studied in detail. The results of the present study will be useful in diagnosing fatigue cracks in real rotors, which invariably have some asymmetry.  相似文献   

8.
A cracked rotor on flexible bearings is studied in this paper. The vibration of such a system has many complexities because of the crack and bearing flexibility. However, if the properties of the bearings are known, the system can be simplified by supposing that, the vibration due to weight is dominant. Equations of motion are derived, and a linear system in which the crack has been considered as an external disturbance described by a series of trigonometric functions is obtained. Consequently, the quasi-periodic vibrations of the rotor and bearings are established by harmonic balance method and approximate values of the vibration determined by truncating the higher order terms. It is believed that the simulated results will be useful for crack detection in the case of weight-dominant rotors.  相似文献   

9.
The effect of a near root local blade crack on the stability of a grouped blade disk is investigated in this paper. A bladed disk comprised of periodically shrouded blades is used to simulate the coupled periodic structure. The blade crack is modeled using the local flexibility with coupling terms. The mode localization phenomenon introduced by the blade crack on the longitudinal and bending vibrations in the rotating blades has also been considered. Using the Galerkin's method, the imperturbation equations of a bladed disk in which one of the blades is cracked, subject to fluctuations in the rotation speed, can be derived. Employing the multiple scales method, the boundaries of the instability zones in the mistuned turbo blade system are approximated. Numerical results indicate that an additional unstable zone is introduced near the localization frequency and the regions of unstable zones are varied with the crack size and fluctuations in disk speed.  相似文献   

10.
This paper presents a numerical study of an autoparametric system composed of two elements: a pendulum and an excited nonlinear oscillator. Owing to an inertial coupling between the two elements, different types of motion are possible, from periodic to chaotic. This study examines a linear induction of an energy harvester depending on the pendulum motion. The harvester consists of a cylindrical permanent magnet mounted on a rotor and of four windings fixed to the housing as a stator. When the pendulum is rotating or swinging, the converter is generating energy due to magnetic induction. In this paper, a method utilizing parametrical resonance for harvesting energy from low frequency vibrations is studied. The authors compare energy induced by different types of pendulum motion: swinging, rotation and chaotic dynamics. Additionally, voltage values for different parameters of excitation are estimated.  相似文献   

11.
An asymptotic approach for determining periodic solutions of non-linear vibration problems of continuous structures (such as rods, beams, plates, etc.) is proposed. Starting with the well-known perturbation technique, the independent displacement and frequency is expanded in a power series of a natural small parameter. It leads to infinite systems of interconnected non-linear algebraic equations governing the relationships between modes, amplitudes and frequencies. A non-trivial asymptotic technique, based on the introduction of an artificial small parameter is used to solve the equations. An advantage of the procedure is the possibility to take into account a number of vibration modes. As examples, free longitudinal vibrations of a rod and lateral vibrations of a beam under cubically non-linear restoring force are considered. Resonance interactions between different modes are investigated and asymptotic formulae for corresponding backbone curves are derived.  相似文献   

12.
A model of a one-dimensional cracked cantilever bar subjected to longitudinal harmonic excitation is used to analyse a nonlinear response as a way to monitor structural health. The effect of the bilinear (nonlinear) character of the crack on the dynamics of the structure is studied. Simulation and experiments were performed to analyse the nonlinear behaviour of the cracked bar. In simulation the nonlinear information is obtained based on a combination of the analytical technique and the Matlab–Simulink computation. From analysis and experiment, it is found that the crack-induced nonlinearity leads to the generation of higher harmonics, whose intensity is a function of a distance from the crack. Side band frequencies were clearly revealed as well. The latter indicate modulation of exciting frequency due to systematic interaction of crack faces. The nonlinear transformation of modulated vibration by crack leads to generation of a low frequency periodic component. Its intensity is proportional to the forced response of the cracked bar at the exciting frequency. The phenomenology revealed can be effective for Structural Health Monitoring.  相似文献   

13.
The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli–Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.  相似文献   

14.
The method of characteristics is used to model vibrations of one-dimensional members in the presence of coupling between axial and flexural waves. Only small deflections are considered and so the couple Fxδy is large only when the axial force Fx is large. Alternative numerical schemes are presented for the integration of terms describing coupling and a suitable explicit scheme is identified. The analysis is used to illustrate the influence of axial loads on frequencies and amplitudes of lateral oscillations of cantilever structures. Strong parametric behaviour is reproduced for a single-storey shear structure, including unstable resonance at double the linear natural frequency.  相似文献   

15.
External and internal bending–torsion coupling effects of a rotor system with comprehensive unbalances are studied by analytical analysis and numerical simulations. Based on Lagrangian approach, a full-degree-of-freedom dynamic model of a Jeffcott rotor is developed. The harmonic balance method and the Floquet theory are combined to analyze the stability of the system equations. Numerical simulations are conducted to observe the bending–torsion coupling effects. In the formulation of rotordynamic model, two bending–torsion coupling patterns, external coupling and internal coupling, are suggested. By analytical analysis, it is concluded that the periodic solution of the system is asymptotically stable. From numerical simulations, three bending–torsion coupling effects are observed in three cases. Under static unbalance, synchronous torsional response is observed, which is the result of external coupling under unbalanced force. Under dynamic unbalance, two-time synchronous frequency torsional response is observed, which is the result of internal coupling under unbalanced moment. Under comprehensive unbalance, synchronous and two-time synchronous frequency torsional components are observed, which are the results of both external and internal couplings under unbalanced force and moment. These observations agree with the analytical analysis. It is believed that these observed phenomena should make sense in the dynamical design and fault diagnostics of a rotor system.  相似文献   

16.
Fully coupled vibrations of actively controlled drillstrings   总被引:1,自引:0,他引:1  
A fully coupled model for axial, lateral, and torsional vibrations of actively controlled drillstrings is presented. The proposed model includes the mutual dependence of these vibrations, which arises due to bit/formation and drillstring/borehole wall interactions as well as other geometric and dynamic non-linearities. The active control strategy is based on optimal state feedback control designed to control the drillstring rotational motion. It is demonstrated by simulation results that bit motion causes torsional vibrations, which in turn excite axial and lateral vibrations resulting in bit bounce and impacts with the borehole wall. It is also shown that the results are in close qualitative agreement with field observations regarding stick-slip and axial vibrations and that the proposed control is effective in suppressing them. However, care must be taken in selecting a set of operating parameters to avoid transient instabilities in the axial and lateral motions.  相似文献   

17.
Nonlinear rotor dynamic is characterized by parametric excitation of both linear and nonlinear terms caused by centrifugal and Coriolis forces when formulated in a moving frame of reference. Assuming harmonically varying support point motions from the tower, the nonlinear parametric instability of a wind turbine wing has been analysed based on a two-degrees-of-freedom model with one modal coordinate representing the vibrations in the blade direction and the other vibrations in edgewise direction. The functional basis for the eigenmode expansion has been taken as the linear undamped fixed-base eigenmodes. It turns out that the system becomes unstable at certain excitation amplitudes and frequencies. If the ratio between the support point motion and the rotational frequency of the rotor is rational, the response becomes periodic, and Floquet theory may be used to determine instability. In reality the indicated frequency ratio may be irrational in which case the response is shown to be quasi-periodic, rendering the Floquet theory useless. Moreover, as the excitation frequency exceeds the eigenfrequency in the edgewise direction, the response may become chaotic. For this reason stability of the system has in all cases been evaluated based on a Lyapunov exponent approach. Stability boundaries are determined as a function of the amplitude and frequency of the support point motion, the rotational speed, damping ratios and eigenfrequencies in the blade and edgewise directions.  相似文献   

18.
王莎  林书玉 《物理学报》2019,68(2):24303-024303
夹心式换能器应用极为广泛,但当其横向尺寸过大时,存在耦合振动,影响其辐射面的位移分布.本文通过在大尺寸夹心式换能器的前盖板中加工周期排列的槽,来形成一种二维声子晶体结构.随后,采用有限元法对基于二维声子晶体的大尺寸夹心式换能器的振动传输特性、共振频率以及发射电压响应进行仿真模拟,讨论了开槽高度和开槽宽度对其带隙、共振与反共振频率、带宽以及辐射面位移分布的影响.研究结果表明,通过在大尺寸夹心式换能器中应用声子晶体结构可对其进行优化设计.当大尺寸夹心式换能器的工作频率位于其带隙范围内时,二维声子晶体结构能有效地抑制其横向振动,从而改善换能器辐射面位移分布的均匀程度.此外,在大尺寸夹心式换能器的前盖板中加工二维声子晶体结构,能有效提升换能器的带宽,进而拓宽大尺寸夹心式换能器的工作频带.  相似文献   

19.
The possibility of using the effect of the modulation of ultrasound by vibrations due to the presence of cracks for the nonlinear acoustic detection of cracks is demonstrated. The method is based on a pulsed ultrasonic sounding with gating the received signal and simultaneously exciting low-frequency vibrations in the sample. The presence of a crack is characterized by the modulation of the ultrasonic wave reflected from the crack. The visualization of the crack position in a model object (a metal rod) is performed. The possibility of selecting a crack on the background of an intense signal reflected from a cavity is experimentally demonstrated. The manifestation of the nonlinear properties of a crack is studied as a function of the polarization of the flexural vibrations of the rod.  相似文献   

20.
DYNAMIC ANALYSIS OF A SPIRAL BEVEL-GEARED ROTOR-BEARING SYSTEM   总被引:3,自引:0,他引:3  
Spiral bevel gears can transmit motion between two rotors, which are commonly perpendicular to each other. In this paper, the dynamic analysis of a spiral bevel-geared rotor-bearing system is studied. Firstly, the constraint equation describing the relationship between the generalized displacements of spiral bevel gear pairs is derived briefly. Then the modelling of coupled axial-lateral-torsional vibration of the rotor system geared by spiral bevel gears is discussed. Finally, the mechanism of coupled vibration of the spiral bevel-geared rotor system is analyzed theoretically and the dynamic behavior of the system is investigated numerically. The conclusions are characterized as follows. The influences of the critical speeds in rigid journal supports, stability threshold speed and unbalanced responses in hydrodynamic journal bearings are not remarkable in comparison with the spur bevel-geared system under the same conditions. However, the critical speeds and stability threshold speed are essentially affected by boundary conditions such as the torsional stiffness, and meanwhile the effect of the unbalanced responses is not prominent under the concerned rotating speeds except that around the resonance peaks. The steady state response due to torsional excitation is also analyzed, and the results show that it cannot be neglected either in the torsional direction or in the lateral and axial directions in the spiral bevel-geared rotor system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号