首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of initial texture on the stored energy is investigated. Uniaxially loaded polycrystalline materials with initial textures based on the Goss component and the Brass component are analyzed. For reference purposes a single crystal and an initial isotropic crystal orientation distribution are also analyzed. Special attention is directed at the thermomechanical behavior of polycrystalline material during cyclic loading, the temperature evolution and change in stored energy are studied. Cyclic loading of Cook’s membrane is also considered. The simulations are done using a rate-dependent crystal plasticity model for large deformations formulated within a thermodynamic framework. It is shown that incorporation of the latent-hardening into the Helmholtz free energy function and use of evolution laws of appropriate form allows a thermodynamically consistent heat generation due to plastic work.  相似文献   

2.
Shape memory alloys (SMAs) are materials that, among other characteristics, have the ability to present high deformation levels when subjected to mechanical loading, returning to their original form after a temperature change. Literature presents numerous constitutive models that describe the phenomenological features of the thermomechanical behavior of SMAs. The present paper introduces a novel three-dimensional constitutive model that describes the martensitic phase transformations within the scope of standard generalized materials. The model is capable of describing the main features of the thermomechanical behavior of SMAs by considering four macroscopic phases associated with austenitic phase and three variants of martensite. A numerical procedure is proposed to deal with the nonlinearities of the model. Numerical simulations are carried out dealing with uniaxial and multiaxial single-point tests showing the capability of the introduced model to describe the general behavior of SMAs. Specifically, uniaxial tests show pseudoelasticity, shape memory effect, phase transformation due to temperature change and internal subloops due to incomplete phase transformations. Concerning multiaxial tests, the pure shear stress and hydrostatic tests are discussed showing qualitatively coherent results. Moreover, other tensile–shear tests are conducted modeling the general three-dimensional behavior of SMAs. It is shown that the multiaxial results are qualitative coherent with the related data presented in the literature.  相似文献   

3.
In this paper, we examine the influence of thermomechanical coupling on the behavior of superelastic shape memory alloys subjected to cyclic loading at different loading rates. Special focus is given to the determination of the area of the stress-strain hysteresis loop once the material has achieved a stabilized state. It is found that this area does not evolve monotonically with the loading rate for either transient or asymptotic states. In order to reproduce this observation analytically, a new model is developed based on the ZM model for shape memory alloys which was modified to account for thermomechanical coupling. The model is shown to predict the non-monotonic variation in hysteresis area to good accord. Experimentally observed variations in the temperature of SMA test samples are also correctly reproduced for lower strain rates.  相似文献   

4.
Initiation and development of shear band (SB) in f.c.c. strain hardening polycrystals during rolling are modelled in terms of crystallographic texture. The constitutive law of the material is expressed in terms of the texture-dependent normalized yield surface and the critical shear stress which evolves with strain. The normalized yield surface is predicted by the Taylor model as a function of rolling texture. It is shown that a rounded vertex (RV) develops at the loading point as the rolling texture becomes more and more marked. A detailed characterization of the RV is carried out. It is found that the normalized curvature radius of the RV decreases from unity towards zero at very large strain. This allows for a small stress perturbation to induce a shear strain perturbation with a large orientation deviation of deformation. By linearized stability analysis, the condition for initiation of SB from the shear strain perturbation is obtained. Development of SB is analysed by solving the established governing equations of shear banding. It is shown that the conditions for SB initiation and saturation of shear localisation depend strongly on the texture. Based on this model problem, a long discussion is carried out which allows a better understanding of the basic physical origin and saturation of SB in strain-hardening polycrystals, as well as the effects of yield surface curvature and yield surface rotation whose general form is derived.  相似文献   

5.
A crystal-plasticity finite-element analysis of the loading-unloading process under uniaxial tension of a rolled magnesium alloy sheet was carried out, and the mechanism of the inelastic response during unloading was examined, focusing on the effects of basal and nonbasal slip systems. The prismatic and basal slip systems were mainly activated during loading, but the activation of the prismatic slip systems was more dominant. Thus the overall stress level during loading was determined primarily by the prismatic slip systems. The prismatic slip systems were hardly activated during unloading because the stress level was of course lower than that during loading. On the other hand, because the strength of the basal slip systems was much lower than that of the prismatic slip systems, the basal slip systems would be easily activated under the stress level during unloading in the opposite direction when their Schmid’s resolved shear stresses changed signs because of the inhomogeneity of the material. These results indicated that one explanation for the inelastic behavior during unloading was that the basal slip systems were primarily activated owing to their low strengths compared to that of the prismatic slip systems. Numerical tests using the sheets with random orientations and with the more pronounced texture were conducted to further examine the mechanism.  相似文献   

6.
Molecular dynamics simulations are performed to study the thermomechanical properties of copper nanofilms at different temperatures and extremely-high loading rates. The results show a drastic temperature softening effect on the film strength and modulus. The increase of strain rate could result in a much higher strength while the modulus is relatively less affected. It is shown, based on the stress results, that the observed “smaller is softer” and “smaller is stronger” behaviors of nanofilms might be due to the surface plasticity and the volumetric dislocations, respectively. It is also found that the thinner a nanofilm, the smaller the thermal expansion coefficient. The present work reveals that the quasistatic thermomechanical properties of bulk copper at room temperature might be inadequate for the continuum-based study of thermomechanical response of copper nanofilms due to ultrafast laser heating.  相似文献   

7.
This paper concerns the behavior of Cu-Al-Be polycrystalline shape memory alloys under cyclic thermomechanical loadings. Sometimes, as shown by many experimental observations, a permanent inelastic strain occurs and increases with the number of cycles. A series of cyclic thermomechanical tests has been carried out and the origin of the residual strain has been identified as residual martensite. These observations have been used to develop a 3D macroscopic model for the superelasticity and stress assisted memory effect of SMAs able to describe the evolution of permanent inelastic strain during cycles. The model has been implemented in a finite elements code and used to simulate the behavior of antagonistic actuators based on SMA springs under cyclic thermomechanical loading with a residual displacement appearance.  相似文献   

8.
9.
The non-linear response of laminated composite plates under thermomechanical loading is studied using the third-order shear deformation theory (TSDT) that includes classical and first-order shear deformation theories (CLPT and FSDT) as special cases. Geometric non-linearity in the von Kármán sense is considered. The temperature field is assumed to be uniform in the plate. Layers of magnetostrictive material, Terfenol-D, are used to actively control the center deflection. The negative velocity feedback control is used with the constant gain value. The effects of lamination scheme, magnitude of loading, layer material properties, and boundary conditions are studied under thermomechanical loading.  相似文献   

10.
Non-linear deformation paths obtained using uniaxial tension followed by simple shear tests were performed for a 1050-O aluminum alloy sheet sample in different specimen orientations with respect to the material symmetry axes. In order to eliminate the time influence, the time interval between the first and second loading steps was kept constant for all the tests. Monotonic uniaxial tension tests interrupted during loading were used to assess the recovery that takes place during this time. In order to eliminate the influence of the initial plastic anisotropy and to compare the results as if the material hardening was isotropic, the flow stress was represented as a function of the plastic work. The behavior of the material after reloading was analyzed in terms of dislocation microstructure and crystallographic texture evolutions. For more quantitative assessment, the full constraints [Int. J. Plasticity 13 (1997) 75] and visco-plastic self-consistent [Acta Metall. Mater. 41 (1993) 2611] polycrystal models were used to simulate the material behavior in the non-linear deformation paths. Based on experimental and simulation results, the relative contributions of the crystallographic texture and dislocation microstructure evolution to the anisotropic hardening behavior of the material were discussed.  相似文献   

11.
Typically, intergranular constraint relations of various sorts are introduced to improve the accuracy of prediction of texture evolution and macroscale stress–strain behavior of metallic polycrystals within the context of simple polycrystal averaging schemes. This paper examines the capability of a 3-D polycrystal plasticity theory (Kocks, U.F., Kallend, J.S., Wank, H.-R., Rollett, A.D. and Wright, S.I. (1994), popLA, Preferred Orientation Package—Los Alamos. LANL LA-CC-89-18), based on the Taylor assumption of uniform deformation among grains, to predict texture evolution and stress–strain behavior for complex finite deformation loading paths of OFHC Cu. Compression, shear and sequences of deformation path are considered. It is shown that the evolution of texture is too rapid and that the intensity of peaks is more pronounced than for experimentally measured pole figures. Comparisons of both stress–strain behavior and texture evolution are made with experiments, with and without the inclusion of latent hardening effects. It is argued that grain subdivision processes accommodate intergranular kinematical constraints, leading to the notion of a generalized Taylor constraint that considers the distribution of subgrain orientations. The subdivision process is assumed to follow the experimentally observed refinement of low energy dislocation structures associated with geometrically necessary dislocations. A modification of the kinematical structure of crystal plasticity is proposed based on generation of geometrically necessary dislocations that accommodate a fraction of the plastic stretch and rotation at the scale of a grain.  相似文献   

12.
13.
The split Hopkinson pressure bar (SHPB) technique is implemented to evaluate the transient response of a colloidal suspension exhibiting shear thickening at strain rates and timescales never before explored in a laboratory instrument. These suspensions are shown to exhibit a discontinuous transition from fluid-like (shear thinning) to solid-like (shear thickening) behavior when evaluated using rotational rheometry. The effect of loading rate on this transition time is studied for a particle volume fraction of 0.54 using the SHPB technique. It is shown that the time required for transition to occur decreases logarithmically with loading rate. From these results, we conclude that transition is not triggered by a characteristic shear rate, but rather a critical shear strain is required. Results from SHPB experiments performed up to Peclet numbers of order 107 are presented and discussed for 0.50, 0.52, and 0.54 particle volume fraction suspensions.  相似文献   

14.
Several multiaxial experiments on polycrystalline NiTi have been conducted within a wide temperature range. In this vein, the pseudoelastic as well as the pseudoplastic behavior are investigated within the distinct temperature regimes. Isothermal and temperature varying thermomechanical loading paths are applied by means of an active temperature control in order to characterize the path dependence of pseudoelasticity and the multiaxial one-way effect of the alloy. The main focus is on the determination of the dependence of the loading sequence, the related non-linearity of the material and the combined material interaction, e.g., referring to reorientation processes for complex loading paths with respect to pseudoelasticity and the one-way effect. Isothermal tension/compression/torsion experiments are performed on an austenitic microstructure spanning all four quadrants of the axial/torsional strain subspace. In this regard, it is deduced in the course of this contribution that the apparently qualitatively different material behavior for different strain paths in the pseudoelastic temperature regime might be explained by the axial/torsional and tension/compression asymmetry. Furthermore, some multidimensional axial/torsional stress controlled experiments are realized with loading on a martensitic and unloading being implemented both on martensitic and austenitic microstructures. Here, the peculiarity of the one-way effect referring to apparently different transformation temperatures is ascribed to the loading history of the specimen material and to differently oriented martensite variants. In order to elucidate these effects, potential explanations for the pseudoelastic path dependence and the non-linearity in the material behavior with reference to the multiaxial one-way effect are presented.  相似文献   

15.
We present a fully general, three dimensional, constitutive model for Shape Memory Alloys (SMAs), aimed at describing all of the salient features of SMA evolutionary response under complex thermomechanical loading conditions. In this, we utilize the mathematical formulation we have constructed, along with a single set of the model’s material parameters, to demonstrate the capturing of numerous responses that are experimentally observed in the available SMA literature. This includes uniaxial, multi-axial, proportional, non-proportional, monotonic, cyclic, as well as other complex thermomechanical loading conditions, in conjunction with a wide range of temperature variations. The success of the presented model is mainly attributed to the following two main factors. First, we use multiple inelastic mechanisms to organize the exchange between the energy stored and energy dissipated during the deformation history. Second, we adhere strictly to the well established mathematical and thermodynamical requirements of convexity, associativity, normality, etc. in formulating the evolution equations governing the model behavior, written in terms of the generalized internal stress/strain tensorial variables associated with the individual inelastic mechanisms. This has led to two important advantages: (a) it directly enabled us to obtain the limiting/critical transformation surfaces in the spaces of both stress and strain, as importantly required in capturing SMA behavior; (b) as a byproduct, this also led, naturally, to the exhibition of the apparent deviation from normality, when the transformation strain rate vectors are plotted together with the surfaces in the space of external/global stresses, that has been demonstrated in some recent multi-axial, non-proportional experiments.  相似文献   

16.
The behavior of an aqueous solution of hydroxypropylcellulose in the liquid crystalline phase is investigated when it is flowing in a rectangular channel. Rheological characterization shows that the viscosity vs. shear rate curve follows the typical three region pattern, with the intermediate plateau of region II extending over a relative large range of shear rates (more than one decade). Two complementary rheo-optical determinations are performed. Velocity profiles across the channel thickness are measured by a hydrogen bubble visualization technique. Texture evolution is monitored by in situ optical microscopy. Accurate focusing inside the sample thickness allows observation in real time of the texture at various shear rates, as generated in the Poiseuille type of flow in the channel. It is shown that the velocity profiles can be accurately predicted by assuming that the flow in the channel is purely viscous, and using only the viscosity data described above. It is also shown that the morphology of the texture generated inside the flowing system is a function of the local shear rate. In particular, an elongated structure is observed when the shear rate exceeds the critical value corresponding to the onset of region II in the viscosity curve.  相似文献   

17.
A general ultrasonic attenuation model for a polycrystal with arbitrary macroscopic texture and triclinic ellipsoidal grains is described with proper accounting for the anisotropic Green’s function for the reference medium. The texture and the ellipsoidal grain frames in the model are independent and the wave propagation direction is arbitrary. The attenuation coefficients are obtained in the Born approximation accompanied by the Rayleigh and stochastic asymptotes. The scattering model displays statistical anisotropy due to two independent factors: (1) shape of the oriented grains and (2) preferred crystallographic orientation of the grains leading to macroscopic anisotropy of the homogenized reference medium. The model is applicable to most single phase polycrystalline materials that may occur as a result of thermomechanical manufacturing processes leading to different macrotextures and elongated-shaped grains. It predicts the strength of ultrasonic scattering and its dependence on frequency and propagation direction as a function of grain shape, grain crystallographic symmetry and macroscopic texture parameters and provides the texture-induced dependence of macroscopic ultrasonic velocity on propagation angle. It considers proper wave polarizations due to macroscopic anisotropy and scattering-induced transformations of waves with different polarizations. Competing effects of grain shape and texture on the attenuation are observed. In contrast to the macroscopically isotropic case, where in the stochastic regime the attenuation is highest in the direction of the longest ellipsoidal axis of the grain, the wave attenuation in the elongation direction may be suppressed or amplified by the texture with different effects on the quasilongitudinal and quasitransverse waves. The frequency behavior is also interestingly affected by texture: a hump in the total attenuation coefficient is found for the fast quasitransverse wave which is purely the result of macroscopic anisotropy and the existence of two quasitransverse waves; this hump is not observed in the macroscopically isotropic case. Striking differences of the texture effect on the directional dependences of the attenuation coefficients are found at low versus high frequencies.  相似文献   

18.
Among all directions available for dislocation emission from the surface of a cylindrical circular void, the direction of the most likely emission is determined. It is shown that this direction is different from the direction of the maximum shear stress at the surface of the void due to the applied loading. The critical stress and the direction of the dislocation emission are determined for circular nanovoids under remote uniaxial, pure shear, and arbitrary biaxial loading. The analysis includes effects of the loading orientation relative to the discrete slip plane orientation. It is shown that dislocations are emitted more readily from larger nanovoids and that wider dislocations are emitted under lower applied stress than narrow dislocations. Different mechanisms, under much lower stress, operate for growth of the micron-size voids.  相似文献   

19.
The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics(MD) simulations.Our results show that the shear properties(such as shear stress–strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号