首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The natural frequencies and mode shapes of beams with constant width and linearly tapered depth (or thickness) carrying any number of point masses at arbitrary positions along the length of the beams were investigated using the Euler-Bernoulli equation. Use of the closed-form (exact) solutions for the natural frequencies and mode shapes of the unconstrained single-tapered beam (without carrying any point masses) and incorporation of the expansion theorem, the equation of motion for the associated constrained beam (carrying any point masses) were derived. Solution of the last equation will yield the desired natural frequencies and mode shapes of the constrained single-tapered beam. The bending vibrations of a single-tapered beam with six kinds of boundary conditions were investigated. Comparison with the existing literature or the traditional finite element method results reveals that the adopted approach has excellent accuracy and simple algorithm.  相似文献   

2.
An exact approach for free vibration analysis of a non-uniform beam with an arbitrary number of cracks and concentrated masses is proposed. A model of massless rotational spring is adopted to describe the local flexibility induced by cracks in the beam. Using the fundamental solutions and recurrence formulas developed in this paper, the mode shape function of vibration of a non-uniform beam with an arbitrary number of cracks and concentrated masses can be easily determined. The main advantage of the proposed method is that the eigenvalue equation of a non-uniform beam with any kind of two end supports, any finite number of cracks and concentrated masses can be conveniently determined from a second order determinant. As a consequence, the decrease in the determinant order as compared with previously developed procedures leads to significant savings in the computational effort and cost associated with dynamic analysis of non-uniform beams with cracks. Numerical examples are given to illustrate the proposed method and to study the effect of cracks on the natural frequencies and mode shapes of cracked beams.  相似文献   

3.
This paper presents the molecular mechanics based finite element modeling of carbon nanotubes (CNTs) and their applications as mass sensors. The beam element with elastic behavior is considered as the bond between the carbon atoms and its properties are obtained using equating continuum and molecular characteristics. The first five natural frequencies of CNTs in cantilever and doubly clamped boundary conditions (BCs) and their corresponding mode shapes are studied in detail. Furthermore, a multilayer perceptron neural network is used to predict the fundamental vibration frequencies of the CNTs with different diameters and lengths. In addition, variations of the natural frequencies of the CNTs with distorted cross sections are investigated. Moreover, the effects of some attached masses with various values on the first three natural frequencies of a considered CNT are studied here.  相似文献   

4.
The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multispan Timoshenko beam carrying a number of various concentrated elements including point masses, rotary inertias, linear springs, rotational springs and spring–mass systems. First, the coefficient matrices for an intermediate pinned support, an intermediate concentrated element, left- and right-end support of a Timoshenko beam are derived. Next, the overall coefficient matrix for the whole structural system is obtained using the numerical assembly technique of the finite element method. Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of in-span pinned supports and various concentrated elements on the dynamic characteristics of the Timoshenko beam are also studied.  相似文献   

5.
An Euler-Bernoulli beam carrying concentrated masses is considered to be a beam-mass system. The beam is simply supported at both ends. The non-linear equations of motion are derived including stretching due to immovable end conditions. The stretching introduces cubic non-linearities into the equations. Forcing and damping terms are also included. Exact solutions for the natural frequencies are given for the linear problem. For the non-linear problem, an approximate solution using a perturbation method is searched. Non-linear terms of the perturbation series appear as corrections to the linear problem. Amplitude and phase modulation equations are obtained. Non-linear free and forced vibrations are investigated in detail. The effect of the positions, magnitudes and number of the masses are investigated.  相似文献   

6.
A novel method is proposed for calculating the natural frequencies of a multiple cracked beam and detecting unknown number of multiple cracks from the measured natural frequencies. First, an explicit expression of the natural frequencies through crack parameters is derived as a modification of the Rayleigh quotient for the multiple cracked beams that differ from the earlier ones by including nonlinear terms with respect to crack severity. This expression provides a simple tool for calculating the natural frequencies of the beam with arbitrary number of cracks instead of solving the complicated characteristic equation. The obtained nonlinear expression for natural frequencies in combination with the so-called crack scanning method proposed recently by the authors allowed the development of a novel procedure for consistent identification of unknown amount of cracks in the beam with a limited number of measured natural frequencies. The developed theory has been illustrated and validated by both numerical and experimental results.  相似文献   

7.
张永康  鲍四元 《应用声学》2024,43(2):330-338
本文使用微分方程解析法求解变截面梁固有频率。首先,建立变截面梁模型,其中截面面积和惯性矩均按幂次函数变化。得到变截面梁自由振动时挠度的解析表达式,并获得不同边界条件下梁弯曲振动的固有频率方程。其中惯性矩所对应幂指数与截面面积的幂指数的差值为4时,可得自振频率方程的精确形式;而幂指数差值不等于4时,给出近似解法。其次,对4种具体的变截面梁求解不同边界下的自振频率,并与瑞利-里兹法所得的自振频率解比较。验证精确解法结果的正确性,并发现近似解法结果的相对偏差在5%以内。该解析方法较瑞利-里兹法具有能快速求解的特点,且易于分析截面参数对梁固有频率的影响。由算例可得,边界和其他参数不变时,梁的同阶次无量纲自振频率随着幂次指数的增加而增加。几何参数中仅截面形状参数改变时,随着形状参数的增加,梁的同阶次无量纲自振频率随之减小,但固定-自由梁的第一阶自振频率除外。  相似文献   

8.
The vibrational behaviour of a beam rotating with constant spin about its longitudinal axis has been investigated for all possible combinations of free, clamped, simply-supported and guided boundaries. The natural frequencies for all these cases are shown either to decrease or increase linearly with increasing spin frequency. In addition the response to harmonically forced oscillations of the beam is presented. It is also shown that, for piecewise constant stiffness, the natural frequencies may be obtained in a similar fashion, as is demonstrated for a satellite boom.  相似文献   

9.
Free vibration of functionally graded beams with a through-width delamination is investigated.It is assumed that the material property is varied in the thickness direction as power law functions and a single through-width delamination is located parallel to the beam axis.The beam is subdivided into three regions and four elements.Governing equations of the beam segments are derived based on the Timoshenko beam theory and the assumption of‘constrained mode’.By using the differential quadrature element method to solve the eigenvalue problem of ordinary differential equations governing the free vibration,numerical results for the natural frequencies of the beam are obtained.Natural frequencies of delaminated FGM beam with clamped ends are presented.Effects of parameters of the material gradients,the size and location of delamination on the natural frequency are examined in detail.  相似文献   

10.
In general, the exact solutions for natural frequencies and mode shapes of non-uniform beams are obtainable only for a few types such as wedge beams. However, the exact solution for the natural frequencies and mode shapes of an immersed wedge beam is not obtained yet. This is because, due to the “added mass” of water, the mass density of the immersed part of the beam is different from its emerged part. The objective of this paper is to present some information for this problem. First, the displacement functions for the immersed part and emerged part of the wedge beam are derived. Next, the force (and moment) equilibrium conditions and the deflection compatibility conditions for the two parts are imposed to establish a set of simultaneous equations with eight integration constants as the unknowns. Equating to zero the coefficient determinant one obtains the frequency equation, and solving the last equation one obtains the natural frequencies of the immersed wedge beam. From the last natural frequencies and the above-mentioned simultaneous equations, one may determine all the eight integration constants and, in turn, the corresponding mode shapes. All the analytical solutions are compared with the numerical ones obtained from the finite element method and good agreement is achieved. The formulation of this paper is available for the fully or partially immersed doubly tapered beams with square, rectangular or circular cross-sections. The taper ratio for width and that for depth may also be equal or unequal.  相似文献   

11.
When a mass-spring system vibrates it does so with frequencies characteristic of the system. If the system as a whole now undergoes a rotational motion then these characteristic frequencies will change from their non-rotational values. It is the purpose of this paper to show how these changes may be calculated for a specified system and, in particular, to investigate the role in these changes of both the system and the rotational parameters. A system of N masses linked sequentially by springs in tension is allowed to vibrate about an equilibrium configuration both radially and transversely upon a smooth turntable. If the turntable is stationary then the radial and transverse vibrations are independent of each other, provided the amplitudes of vibration are sufficiently small. There are then N natural frequencies of vibration for each mode. However, when the turntable rotates then the Coriolis effects give rise to an interaction between the two modes of vibration, and there are now 2 N natural frequencies for the combined vibrations. If the rate of rotation is “small” then the two modes are almost separated and it is possible to discuss the “essentially radial” or “essentially transverse” mode of vibration each of which has N natural frequencies. It is these natural frequencies which are considered in this work, in particular their dependence upon the rotation rate and upon the tension in the springs (when in the static configuration). In a previous paper, it was shown that if only radial vibrations are allowed (by admitting say a guide rail) then all the natural frequencies decrease, with increasing rotation rate, from their static values. It is shown that the opposite is the case here in that the “essentially radial” natural frequencies increase with increasing rotation rate. This is due to the Coriolis interaction with the transverse vibrations. The “essentially transverse” frequencies are also found and the nature of their dependence discussed. Also included in the analysis is the effect on the frequencies of the (weak) coupling between the motion of the masses and the rotation of the turntable as a consequence of the conservation of angular momentum. In addition to treating N being finite the limiting case of an infinite number of masses is considered to determine the natural frequencies of vibration of a continuous stretched string undergoing rotation.  相似文献   

12.
This paper studies the vibration characteristics of a rotating tapered cantilever Bernoulli–Euler beam with linearly varying rectangular cross-section of area proportional to xn, where n equals to 1 or 2 covers the most practical cases. In this work, the differential transform method (DTM) is used to find the nondimensional natural frequencies of the tapered beam. Numerical results are tabulated for different taper ratios, nondimensional angular velocities and nondimensional hub radius. The effects of the taper ratio, nondimensional angular velocity and nondimensional hub radius are discussed. The accuracy is assured from the convergence of the natural frequencies and from the comparisons made with the studies in the open literature. It is shown that the natural frequencies of a rotating tapered cantilever Bernoulli–Euler beam can be obtained with high accuracy by using DTM.  相似文献   

13.
The in-plane vibration of a complex cable-stayed bridge that consists of a simply-supported four-cable-stayed deck beam and two rigid towers is studied. The nonlinear and linear partial differential equations that govern transverse and longitudinal vibrations of the cables and transverse vibrations of segments of the deck beam, respectively, are derived, along with their boundary and matching conditions. The undamped natural frequencies and mode shapes of the linearized model of the cable-stayed bridge are determined, and orthogonality relations of the mode shapes are established. Numerical analysis of the natural frequencies and mode shapes of the cable-stayed bridge is conducted for various symmetrical and non-symmetrical bridge cases with regards to the sizes of the components of the bridge and the initial sags of the cables. The results show that there are very close natural frequencies when the bridge model is symmetrical and/or partially symmetrical, and the mode shapes tend to be more localized when the bridge model is less symmetrical. The relationships between the natural frequencies and mode shapes of the cable-stayed bridge and those of a single fixed–fixed cable and the single simply-supported deck beam are analyzed. The results, which are validated by commercial finite element software, demonstrate some complex classical resonance behavior of the cable-stayed bridge.  相似文献   

14.
This paper employs the numerical assembly method (NAM) to determine the “exact” frequency–response amplitudes of a multiple-span beam carrying a number of various concentrated elements and subjected to a harmonic force, and the exact natural frequencies and mode shapes of the beam for the case of zero harmonic force. First, the coefficient matrices for the intermediate concentrated elements, pinned support, applied force, left-end support and right-end support of a beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact dynamic response amplitude of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force is determined by solving the simultaneous equations associated with the last overall coefficient matrix. The graph of dynamic response amplitudes versus various exciting frequencies gives the frequency–response curve for any point of a multiple-span beam carrying a number of various concentrated elements. For the case of zero harmonic force, the above-mentioned simultaneous equations reduce to an eigenvalue problem so that natural frequencies and mode shapes of the beam can also be obtained.  相似文献   

15.
The plane wave expansion method is extended to study the flexural wave propagation in locally resonant beams with multiple periodic arrays of attached spring-mass resonators. Complex Bloch wave vectors are calculated to quantify the wave attenuation performance of band gaps. It is shown that a locally resonant beam with multiple arrays of damped resonators can achieve much broader band gaps, at frequencies both below and around the Bragg condition, than a locally resonant beam with only a single array of resonators, although the two systems have the same total resonator masses.  相似文献   

16.
Different types of actuating and sensing mechanisms are used in new micro and nanoscale devices. Therefore, a new challenge is modeling electromechanical systems that use these mechanisms. In this paper, free vibration of a magnetoelectroelastic (MEE) microbeam is investigated in order to obtain its natural frequencies and buckling loads. The beam is simply supported at both ends. External electric and magnetic potentials are applied to the beam. By using the Hamilton's principle, the governing equations and boundary conditions are derived based on the Euler–Bernoulli beam theory. The equations are solved, analytically to obtain the natural frequencies of the MEE microbeam. Furthermore, the effects of external electric and magnetic potentials on the buckling of the beam are analyzed and the critical values of the potentials are obtained. Finally, a numerical study is conducted. It is found that the natural frequency can be tuned directly by changing the magnetic and electric potentials. Additionally, a closed form solution for the normalized natural frequency is derived, and buckling loads are calculated in a numerical example.  相似文献   

17.
In this paper, a simple method for detection of multiple edge cracks in Euler–Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm.  相似文献   

18.
The paper presents the results of a computational modeling for damage identification process for an axial rod representing an end-bearing pile foundation with known damage and a simply supported beam representing a bridge girder. The paper proposes a methodology for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete axial rod and beam, idealized with distributed damage model. Identification of damage is from Equal_Eigen_value_change (Iso_Eigen_value_Change) contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. An experiment conducted on a free-free axially loaded reinforced concrete member and a flexural beam is shown as examples to prove the pros and cons of this method.  相似文献   

19.
We determine the relation between photon, cyclotron, collision, and plasma frequencies which ensures a null Faraday rotation for electromagnetic wave propagation in a free-carrier magnetoplasma. This provides a clean determination (in the sense that it is independent of multiple reflections and the length of the plasma along the beam direction) of scattering times and effective masses in MIS and other systems.  相似文献   

20.
The exact dynamic analysis of plane frames should consider the effect of mass distribution in beam elements, which can be achieved by using the dynamic stiffness method. Solving for the natural frequencies and mode shapes from the dynamic stiffness matrix is a nonlinear eigenproblem. The Wittrick-Williams algorithm is a reliable tool to identify the natural frequencies. A deflated matrix method to determine the mode shapes is presented. The dynamic stiffness matrix may create some null modes in which the joints of beam elements have null deformation. Adding an interior node at the middle of beam elements can eliminate the null modes of flexural vibration, but does not eliminate the null modes of axial vibration. A force equilibrium approach to solve for the null modes of axial vibration is presented. Orthogonal conditions of vibration modes in the Bernoulli-Euler plane frames, which are required in solving the transient response, are theoretically derived. The decoupling process for the vibration modes of the same natural frequency is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号