首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A crystallographic slip based model for cubic oriented NiAl single crystals is derived from an idealization of the dislocation network observed in the active slip systems, viz. {110} 〈110〉. The crystallographic model successfully accounts for the cyclic steady-state behaviour of crystals subjected to strain histories within the range ϵ〈100〉 = ϵm ± 0.5%, for ϵm = 0 and 35%, at 750 and 850°C. It accurately predicts the flow stress dependence on temperature, strain rate and dislocation density arising from the lattice resistance to dislocation motion and from discrete obstacle resistance due to dislocation interactions. The kinematic and isotropic hardening modes associated with defect trails left behind by gliding dislocations and dislocation storage, respectively, are properly represented. The average distance that dislocations have to glide for their density to increase beyond the level needed to balance dynamic recovery processes was predicted to be approximately 260 times the random forest dislocation spacing. Measured dislocation densities at different mean strains were found to be consistent with the predictions of the theoretical model.  相似文献   

2.
The rate-dependent behavior of micron-scale model planar crystals is investigated using the framework of mechanism-based discrete dislocation plasticity. Long-range interactions between dislocations are accounted for through elasticity. Mechanism-based constitutive rules are used to represent the short-range interactions between dislocations, including dislocation multiplication and dislocation escape at free surfaces. Emphasis is laid on circumstances where the deformed samples are not statistically homogeneous. The calculations show that dimensional constraints selectively set the operating dislocation mechanisms, thus giving rise to the phenomenon of exhaustion hardening whereby the applied strain rate is predominantly accommodated by elastic deformation. When conditions are met for this type of hardening to take place, the calculations reproduce some interesting qualitative features of plastic deformation in microcrystals, such as flow intermittency over coarse time-scales and large values of the flow stress with no significant accumulation of dislocation density. In addition, the applied strain rate is varied down to 0.1 s−1 and is found to affect the rate of exhaustion hardening.  相似文献   

3.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

4.
To describe the work hardening process of polycrystals processed using various thermomechanical cycles with isochronal annealing from 500 to 900 °C, a dislocation based strain hardening model constructed in the basis of the so-called Kocks–Mecking model is proposed. The time and temperature dependence of flow stress is accounted via grain boundary migration, and the migration is related to annihilation of extrinsic grain boundary dislocations (EGBD’s) by climb via lattice diffusion of vacancies at the triple points. Recovery of yield stress is associated with changes in the total dislocation density term ρT. A sequence of deformation and annealing steps generally result in reduction of flow stress via the annihilation of the total dislocation density ρT defined as the sum of geometrically necessary dislocations ρG and statistically stored dislocations ρS. The predicted variation of yield stress with annealing temperature and cold working stages is in agreement with experimental observations. An attempt is made to determine the mathematical expressions which best describe the deformation behaviour of polycrystals in uniaxial deformation.  相似文献   

5.
Mechanistic explanations for the plastic behavior of a wrought magnesium alloy are developed using a combination of experimental and simulation techniques. Parameters affecting the practical sheet formability, such as strain hardening rate, strain rate sensitivity, the degree of anisotropy, and the stresses and strains at fracture, are examined systematically by conducting tensile tests of variously oriented samples at a range of temperatures (room temperature to 250 °C) and strain rates (10−5–0.1 s−1). Polycrystal plasticity simulations are used to model the observed anisotropy and texture evolution. Strong in-plane anisotropy observed at low temperatures is attributed to the initial texture and the greater than anticipated non-basal cross-slip of dislocations with 〈a〉 type Burgers vectors. The agreement between the measured and simulated anisotropy and texture is further validated by direct observations of the dislocation microstructures using transmission electron microscopy. The increase in the ductility with temperature is accompanied by a decrease in the flow stress, an increase in the strain rate sensitivity, and a decrease in the normal anisotropy. Polycrystal simulations indicate that an increased activity of non-basal, 〈c + a〉, dislocations provides a self-consistent explanation for the observed changes in the anisotropy with increasing temperature.  相似文献   

6.
A model is developed for thermomechanical behavior of defective, low-symmetry ceramic crystals such as αα-corundum. Kinematics resolved are nonlinear elastic deformation, thermal expansion, dislocation glide, mechanical twinning, and residual lattice strains associated with eigenstress fields of defects such as dislocations and stacking faults. Multiscale concepts are applied to describe effects of twinning on effective thermoelastic properties. Glide and twinning are thermodynamically irreversible, while free energy accumulates with geometrically necessary dislocations associated with strain and rotation gradients, statistically stored dislocations, and twin boundaries. The model is applied to describe single crystals of corundum. Hardening behaviors of glide and twin systems from the total density of dislocations accumulated during basal slip are quantified for pure and doped corundum crystals. Residual lattice expansion is predicted from nonlinear elasticity and dislocation line and stacking fault energies.  相似文献   

7.
This paper describes a numerical, hierarchical multiscale modeling methodology involving two distinct bridges over three different length scales that predicts the work hardening of face centered cubic crystals in the absence of physical experiments. This methodology builds a clear bridging approach connecting nano-, micro- and meso-scales. In this methodology, molecular dynamics simulations (nanoscale) are performed to generate mobilities for dislocations. A discrete dislocations numerical tool (microscale) then uses the mobility data obtained from the molecular dynamics simulations to determine the work hardening. The second bridge occurs as the material parameters in a slip system hardening law employed in crystal plasticity models (mesoscale) are determined by the dislocation dynamics simulation results. The material parameters are computed using a correlation procedure based on both the functional form of the hardening law and the internal elastic stress/plastic shear strain fields computed from discrete dislocations. This multiscale bridging methodology was validated by using a crystal plasticity model to predict the mechanical response of an aluminum single crystal deformed under uniaxial compressive loading along the [4 2 1] direction. The computed strain-stress response agrees well with the experimental data.  相似文献   

8.
An empirical plasticity constitutive form describing the flow stress as a function of strain, strain-rate, and temperature has been developed, fit to data for three dual-phase (DP) steels, and compared with independent experiments outside of the fit domain. Dubbed the “H/V model” (for “Hollomon/Voce”), the function consists of three multiplicative functions describing (a) strain hardening, (b) strain-rate sensitivity, and (c) temperature sensitivity. Neither the multiplicative structure nor the choice of functions (b) or (c) is novel. The strain hardening function, (a), has two novel features: (1) it incorporates a linear combination coefficient, α, that allows representation of Hollomon (power law) behavior (α = 1), Voce (saturation) behavior (α = 0) or any intermediate case (0 < α < 1, and (2) it allows incorporation of the temperature sensitivity of strain hardening rate in a natural way by allowing α to vary with temperature (in the simplest case, linearly). This form therefore allows a natural transition from unbounded strain hardening at low temperatures toward saturation behavior at higher temperatures, consistent with many observations. Hollomon, Voce, H/V models and others selected as representative from the literature were fit for DP590, DP780, and DP980 steels by least-squares using a series of tensile tests up to the uniform strain conducted over a range of temperatures. Jump-rate tests were used to probe strain rate sensitivity. The selected laws were then used with coupled thermo-mechanical finite element (FE) modeling to predict behavior for tests outside the fit range: non-isothermal tensile tests beyond the uniform strain at room temperatures, isothermal tensile tests beyond the uniform strain at several temperatures and hydraulic bulge tests at room temperature. The agreement was best for the H/V model, which captured strain hardening at high strain accurately as well as the variation of strain hardening with temperature. The agreement of FE predictions up to the tensile failure strain illustrates the critical role of deformation-induced heating in high-strength/high ductility alloys, the importance of having a constitutive model that is accurate at large strains, and the implication that damage and void growth are unlikely to be determinant factors in the tensile failure of these alloys. The new constitutive model may have application for a wide range of alloys beyond DP steels, and it may be extended to larger strain rate and temperature ranges using alternate forms of strain rate sensitivity and thermal softening appearing in the literature.  相似文献   

9.
In this paper, an experimental investigation and a constitutive modeling of the mechanical response of an interstitial-free (IF) steel over a wide range of strain rates (from 0.001/s to 750/s) are presented. Tensile tests at relatively high strain rates, exceeding 100/s, are performed at an initial room temperature, using the so-called one bar technique developed on the basis of the Hopkinson bar method. At a high strain rate, a distinct upper yield limit is observed, and the subsequent flow stress increases remarkably. Furthermore, the ductility is reduced significantly in comparison to the case of low strain rate tension. In order to express such a complicated material response of IF steel, we develop a new constitutive model that takes into account effects of a change in the mobile dislocation density and thermal softening. The model can be easily applicable to large-scale engineering computations, because it is macroscopically formulated. We try to reproduce the tensile response including a diffuse neck formation at high strain rates, using the proposed constitutive model and finite element method. The results indicate that a change in the mobile dislocation density, together with thermal softening, has substantial effects on apparent work hardening behavior at high strain rates, although the change in the mobile dislocation density is transcribed at macroscopic scale in the model. Finally, we discuss characteristics of true stress–true strain curves at various strain rates, and their correlation with the plastic instability behavior.  相似文献   

10.
在金属晶体材料高应变率大应变变形过程中,存在强烈的位错胞尺寸等微观结构特征长度细化现象,势必对材料加工硬化、宏观塑性流动应力产生重要影响。基于宏观塑性流动应力与位错胞尺寸成反比关系,提出了一种新型的BCJ本构模型。利用位错胞尺寸参数,修正了BCJ模型的流动法则、内变量演化方程,引入了考虑应变率和温度相关性的位错胞尺寸演化方程,建立了综合考虑微观结构特征长度演化、位错累积与湮灭的内变量黏塑性本构模型。应用本文模型,对OFHC铜应变率在10-4~103 s-1、温度在298~542 K、应变在0~1的实验应力-应变数据进行了预测。结果表明:在较宽应变率、温度和应变范围内,本文模型的预测数据与实验吻合很好;与BCJ模型相比,对不同加载条件下实验数据的预测精度均有较大程度的提高,最大平均相对误差从9.939%减小为5.525%。  相似文献   

11.
A physically based modelling and experimental investigation of the work hardening behaviour of IF steel covering a wide range of strain rates including complex strain path and/or strain rate changes are presented. In order to obtain isothermal stress–strain curves at high strain rates, a procedure has been proposed with the aid of finite element analysis. The result reveals that the apparent excess of the flow stress after a jump in strain rate, which is frequently observed in bcc metals, is in fact due to the thermal softening at large strains, and that the flow stress after a jump in strain rate tends asymptotically to the values corresponding to the curve at the new strain rate. The strain rate affects not only the short-range stress but also the long-range stress via the strain-rate dependant evolution of dislocation structures. The proposed model is based on the dislocation model of intragranular hardening proposed by Teodosiu and Hu [Teodosiu, C., Hu, Z., 1995. Evolution of the intragranular microstructure at moderate and large strains: modelling and computational significance. In: Shen, S., Dawson, P. R., (Eds.), Proceedings of Numiform'95 on Simulation of Materials Processing: Theory, Methods and Applications. Balkema, Rotterdam, pp. 173–182] and extended to strain rate sensitive one with applying the results of the thermal activation analysis. A satisfactory agreement has been achieved between model predictions and experimental results.  相似文献   

12.
The low-temperature (less than one-fourth of the melting temperature) creep deformation behavior of hexagonally close-packed (HCP) α-Ti–1.6 wt.% V was investigated. Creep tests were performed at various temperatures between room temperature and 205 °C at 95% of the respective yield stress at the different temperatures. The creep strain rate was found to increase with increasing temperature. Scanning and transmission electron microscopy revealed that slip and unusually slow twin growth, or time-dependent twinning, are active deformation mechanisms for the entire temperature range of this investigation. The activation energy for creep of this alloy was calculated to identify the rate-controlling deformation mechanism, and was found to increase with increasing creep strain. At low strain, the activation energy for creep was found to be close to the previously calculated activation energy for slip. At high strain, the calculated activation energy indicates that both slip and twinning are significant deformation mechanisms. The appearance of twinning at high strains is explained by a model for twin nucleation by dislocation pileups.  相似文献   

13.
高玉魁  陶雪菲 《爆炸与冲击》2021,41(4):041401-1-041401-26
高速冲击表面处理过程中的应变率对金属材料的宏观力学性能和微观组织结构都具有重要影响。根据当前应变率效应的研究成果,从宏观与微观相结合的角度出发,综述了高速冲击表面处理过程中应变率对金属材料强度和塑性的影响规律,并重点阐述了不同应变率下金属材料内部微观组织结构的演变规律,主要包括晶粒结构、绝热剪切带、相变、位错组态和析出相以及变形孪晶等。此外,还分析了组织结构随应变率的演化和微观变形机制的转变对材料力学性能的强化和弱化机理。最后,对高速冲击表面处理梯度组织的变形特点进行了总结。提出了不同组织结构对材料性能影响的综合效应模型,以期为应变率效应的深入研究奠定基础。  相似文献   

14.
Plastic size effects in single crystals are investi-gated by using finite strain and small strain discrete dislo-cation plasticity to analyse the response of cantilever beam specimens. Crystals with both one and two active slip sys-tems are analysed, as well as specimens with different beam aspect ratios. Over the range of specimen sizes analysed here, the bending stress versus applied tip displacement response has a strong hardening plastic component. This hardening rate increases with decreasing specimen size. The hardening rates are slightly lower when the finite strain discrete disloca-tion plasticity (DDP) formulation is employed as curving of the slip planes is accounted for in the finite strain formulation. This relaxes the back-stresses in the dislocation pile-ups and thereby reduces the hardening rate. Our calculations show that in line with the pure bending case, the bending stress in cantilever bending displays a plastic size dependence. How-ever, unlike pure bending, the bending flow strength of the larger aspect ratio cantilever beams is appreciably smaller. This is attributed to the fact that for the same applied bend-ing stress, longer beams have lower shear forces acting upon them and this results in a lower density of statistically stored dislocations.  相似文献   

15.
The effects of the dislocation pattern formed due to the self-organization of the dislocations in crystals on the macroscopic hardening and dynamic internal friction (DIF) during deformation are studied. The classic dislocation models for the hardening and DIF corresponding to the homogeneous dislocation configuration are extended to the case for the non-homogeneous one. In addition, using the result of dislocation patterning deduced from the non-linear dislocation dynamics model for single slip, the correlation between the dislocation pattern and hardening as well as DIF is obtained. It is shown that in the case of the tension with a constant strain rate, the bifurcation point of dislocation patterning corresponds to the turning point in the stress versus strain and DIF versus strain curves. This result along with the critical characteristics of the macroscopic behavior near the bifurcation point is microscopically and macroscopically in agreement with the experimental findings on mono-crystalline pure aluminum at temperatures around 0.5T m . The present study suggests that measuring the DIF would be a sensitive and useful mechanical means in order to study the critical phenomenon of materials during deformation. The project supported by the National Natural Science Foundation of China under the Grand 19702019 & 19891180-4 and by the Chinese Academy of Sciences under the Grand KJ951-1-201.  相似文献   

16.
A unified phenomenological model is developed to study the dislocation glide through weak obstacles during the first stage of plastic deformation in metals. This model takes into account both the dynamical responses of dislocations during the flight process and thermal activations while dislocations are bound by obstacle arrays. The average thermal activation rate is estimated using an analytical model based on the generalized Friedel relations. Then, the average flight velocity after an activation event is obtained numerically by discrete dislocation dynamics (DD). To simulate the dynamical dislocation behavior, the inertia term is implemented into the equation of dislocation motion within the DD code. The results from the DD simulations, coupled with the analytical model, determine the total dislocation velocity as a function of the stress and temperatures. By choosing parameters typical of the face centered cubic metals, the model reproduces both obstacle control and drag control motion in low and high velocity regimes, respectively. As expected by other string models, dislocation overshoots of obstacles caused by the dislocation inertia at the collisions are enhanced as temperature goes down.  相似文献   

17.
18.
The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of parallel straight edge dislocations gliding on independent slip systems in a plane strain model of a crystal, is often used to study complicated boundary value problems in crystal plasticity. However, the absence of truly three dimensional mechanisms such as junction formation means that forest hardening cannot be modeled, unless additional so-called ‘2.5D’ constitutive rules are prescribed for short-range dislocation interactions. Here, results from three dimensional dislocation dynamics (3D DD) simulations in an FCC material are used to define new constitutive rules for short-range interactions and junction formation between dislocations on intersecting slip systems in 2D. The mutual strengthening effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is also accounted for in the model. The new ‘2.5D’ DD model, with no arbitrary adjustable parameters beyond those obtained from lower scale simulation methods, is shown to predict athermal hardening rates, differences in flow behavior for single and multiple slip, and latent hardening ratios. All these phenomena are well-established in the plasticity of crystals and quantitative results predicted by the model are in good agreement with experimental observations.  相似文献   

19.
A polycrystal finite element (FE) model describing the temperature evolution of low carbon steel is proposed in order to forecast the local mechanical fields as a function of temperature, for bainitic microstructure submitted to tri-axial loading. The model is designed for finite strains, large lattice rotations and temperatures ranging into the brittle–ductile transition domain. The dislocation densities are the internal variables. At low temperature in Body Centred Cubic (BCC) materials, plasticity is governed by double kink nucleation of screw dislocations, whereas at high temperature, plasticity depends on interactions between mobile dislocations and the forest dislocations. In this paper, the constitutive law and the evolution of the dislocation densities are written as a function of temperature and describe low and high temperature mechanisms. The studied aggregates are built from Electron Back Scattering Diffraction (EBSD) images of real bainitic steel. The aggregate is submitted to a tri-axial loading in order to describe the material at a crack tip. Mechanical parameters are deduced from mechanical tests. The local strain and stress fields, computed for different applied loadings, present local variations which depend on temperature and on tri-axial ratio. The distribution curves of the maximal principal stresses show that heterogeneities respectively increase with temperature and decrease with tri-axial ratio. A direct application of this model provides the evaluation of the rupture probability within the aggregate, which is treated as the elementary volume in the weak link theory. A comparison with the Beremin criterion calibrated on experimental data, shows that the computed fracture probability dispersion induced by the stress heterogeneities is of the same order than the measured dispersion. Temperature and stress tri-axiality ratio effects are also investigated. It is shown that these two parameters have a strong effect on fracture owing to their influence on the heterogeneous plastic strain. These inhomogeneities can initiate cleavage fracture.  相似文献   

20.
本文对结构用钢Q345的低周疲劳性能进行了试验研究。试验在常温下岛津电液伺服疲劳试验机上进行,采用轴向应变控制方法,恒定应变速率为0.005s-1,应变比为-1。试验结果表明,初始阶段,Q345在高应变幅值(0.6%)循环作用下出现循环硬化效应,而在低应变幅值(0.6%)作用下出现循环软化效应;随着加载应变幅的增加,硬化和软化率呈直线上升趋势。Q345疲劳裂纹萌生阶段占其整个寿命的60%以上,其裂纹萌生寿命与应变幅存在幂函数关系。根据Coffin-Manson公式得到了Q345的应变-寿命关系公式;采用能量预测法得到了材料的塑性应变能与疲劳寿命的关系表达式。上述结果对钢结构的设计、评估具有重要的工程应用参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号