首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finite element modeling of elasto-plastic contact between rough surfaces   总被引:3,自引:0,他引:3  
This paper presents a finite element calculation of frictionless, non-adhesive, contact between a rigid plane and an elasto-plastic solid with a self-affine fractal surface. The calculations are conducted within an explicit dynamic Lagrangian framework. The elasto-plastic response of the material is described by a J2 isotropic plasticity law. Parametric studies are used to establish general relations between contact properties and key material parameters. In all cases, the contact area A rises linearly with the applied load. The rate of increase grows as the yield stress σy decreases, scaling as a power of σy over the range typical of real materials. Results for A from different plasticity laws and surface morphologies can all be described by a simple scaling formula. Plasticity produces qualitative changes in the distributions of local pressures in the contact and of the size of connected contact regions. The probability of large local pressures is decreased, while large clusters become more likely. Loading-unloading cycles are considered and the total plastic work is found to be nearly constant over a wide range of yield stresses.  相似文献   

2.
The diffuse mode bifurcation of elastoplastic solids at finite strain is investigated. The multiplicative decomposition of deformation gradient and the hyperelasto-plastic constitutive relationship are adapted to the numerical bifurcation analysis of the elastoplastic solids. First, bifurcation analyses of rectangular plane strain specimens subjected to uniaxial compression are conducted. The onset of the diffuse mode bifurcations from a homogeneous state is detected; moreover, the post-bifurcation states for these modes are traced to arrive at localization to narrow band zones, which look like shear bands. The occurrence of diffuse mode bifurcation, followed by localization, is advanced as a possible mechanism to create complex deformation and localization patterns, such as shear bands. These computational diffuse modes and localization zones are shown to be in good agreement with the associated experimental ones observed for sand specimens to ensure the validity of this mechanism. Next, the degradation of horizontal sway stiffness of a rectangular specimen due to plane strain uniaxial compression is pointed out as a cause of the bifurcation of the first antisymmetric diffuse mode, which triggers the tilting of the specimen. Last, circular and punching failures of a footing on a foundation are simulated.  相似文献   

3.
The mechanics of material removal during a single-grit rotating scratch has been investigated both analytically and experimentally. The models for cutting, plowing and mixed modes of material removal are analyzed based on the pressure and the frictional resistance. The mixed-mode model takes into account the contribution of built-up edge (BUE) ahead of the tool. To validate the model, single-grit rotating scratch experiments were conducted with a conical diamond tool on pure titanium. It was noticed that the adhesion between the tool and the deformed material, and the hardening properties of material play active roles in the scratching process and provide a driving force to the formation of the BUE. The overall frictional coefficient was found to oscillate strongly on both ends of the scratch but increases steadily over the central span of the scratch length. It is shown that the mixed-mode model captures the salient features of material removal and the size dependence of specific energy during the formation of a rotating scratch. The size dependence of specific energy may be attributed to the size effect of the yield pressure in titanium.  相似文献   

4.
A new contact-mechanics-based model for chemical-mechanical polishing is presented. According to this model, the local polish rate is controlled by the pressure distribution between features on the wafer and the polishing pad. The model uses an analysis based on the work by Greenwood to evaluate this pressure distribution taking into account pad compliance and roughness. Using the model, the effects of pattern density, applied down-force, selectivity, pad properties, etc. on the evolution of the wafer surface can be readily evaluated. The interaction between individual pad asperities and the wafer pattern is investigated in detail. It is shown that the pressure distribution between an asperity and the wafer surface is discontinuous at edges of features that have different nominal polish rates and that this pressure discontinuity dominates the polish rate and dishing of narrow features.The model is implemented as an algorithm that calculates the evolution of the profile of a set of features on the wafer during the polishing process. The model can be applied to chemical-mechanical polishing used for oxide planarization, metal damascene or shallow trench isolation.  相似文献   

5.
Oblique indentation of power-law creeping solids by a rigid die is analysed in three dimensions with perfectly plastic behaviour emerging as an asymptotic case. Indenter profiles are prescribed to be axisymmetric for simplicity but not by necessity. Invariance and generality is aimed at, as the problem is governed by only four essential parameters, i.e. the die profile, p, the indentation angle, γ, the power-law exponent, n, and the coefficient of friction, μ. The solution strategy is based on a self-similar transformation resulting in a reduced problem corresponding to flat die indentation of complete contact. The reduced auxiliary problem, being independent of loading, history and time, was solved by a three-dimensional finite element analysis characterized by high accuracy. Subsequently, cumulative superposition was used to resolve the original problem and global and invariant relations between force, depth and contact area were determined. Detailed results are given for the location and shape of the contact region and stick/slip contours as well as for local states of surface stresses and deformation at flat and spherical indenters. Due to the asymmetry prevailing, it was found that in the spherical case, contact contours proved to be oval and shifted, although with normal and tangential forces only weakly coupled. Finite friction as compared to full adhesion proved to have only a minor effect on global relations. The framework laid down may be applied to the contact of structural assemblies subjected especially to elevated temperatures and also to various issues such as compaction of powder aggregates, flattening of rough surfaces and plastic impact.  相似文献   

6.
A fundamental model of cyclic instabilities in thermal barrier systems   总被引:2,自引:0,他引:2  
Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strain; (iv) yielding in the TGO and the bond coat; and (v) initial geometric imperfections. This study explores a fundamental understanding of the propagation phenomenon by devising a spherically symmetric model that can be solved analytically. The applicability of this model is addressed through comparison with simulations conducted for representative geometric imperfections and by analogy with the elastic/plastic indentation of a half space. Finite element analysis is used to confirm and extend the model. The analysis identifies the dependencies of the instability on the thermo-mechanical properties of the system. The crucial role of the in-plane growth strain is substantiated, as well as the requirement for bond coat yielding. It is demonstrated that yielding of the TGO is essential and is, in fact, the phenomenon that differentiates between cyclic and isothermal responses.  相似文献   

7.
In order to model the effects of grain boundaries in polycrystalline materials we have coupled a crystal-plasticity model for the grain interiors with a new elastic-plastic grain-boundary interface model which accounts for both reversible elastic, as well irreversible inelastic sliding-separation deformations at the grain boundaries prior to failure. We have used this new computational capability to study the deformation and fracture response of nanocrystalline nickel. The results from the simulations reflect the macroscopic experimentally observed tensile stress-strain curves, and the dominant microstructural fracture mechanisms in this material. The macroscopically observed nonlinearity in the stress-strain response is mainly due to the inelastic response of the grain boundaries. Plastic deformation in the interior of the grains prior to the formation of grain-boundary cracks was rarely observed. The stress concentrations at the tips of the distributed grain-boundary cracks, and at grain-boundary triple junctions, cause a limited amount of plastic deformation in the high-strength grain interiors. The competition of grain-boundary deformation with that in the grain interiors determines the observed macroscopic stress-strain response, and the overall ductility. In nanocrystalline nickel, the high-yield strength of the grain interiors and relatively weaker grain-boundary interfaces account for the low ductility of this material in tension.  相似文献   

8.
A metal reinforced by fibers in the micron range is studied using the strain gradient plasticity theory of Fleck and Hutchinson (J. Mech. Phys. Solids 49 (2001) 2245). Cell-model analyses are used to study the influence of the material length parameters numerically, for both a single parameter version and the multiparameter theory, and significant differences between the predictions of the two models are reported. It is shown that modeling fiber elasticity is important when using the present theories. A significant stiffening effect when compared to conventional models is predicted, which is a result of a significant decrease in the level of plastic strain. Moreover, it is shown that the relative stiffening effect increases with fiber volume fraction. The higher-order nature of the theories allows for different higher-order boundary conditions at the fiber-matrix interface, and these boundary conditions are found to be of importance. Furthermore, the influence of the material length parameters on the stresses along the interface between the fiber and the matrix material is discussed, as well as the stresses within the elastic fiber which are of importance for fiber breakage.  相似文献   

9.
On the fracture toughness of ferroelastic materials   总被引:2,自引:0,他引:2  
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.  相似文献   

10.
11.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

12.
The strain gradient work hardening is important in micro-indentation of bulk metals and thin metallic films, though the indentation of thin films may display very different behavior from that of bulk metals. We use the conventional theory of mechanism-based strain gradient plasticity (CMSG) to study the indentation of a hard tungsten film on soft aluminum substrate, and find good agreement with experiments. The effect of friction stress (intrinsic lattice resistance), which is important in body-center-cubic tungsten, is accounted for. We also extend CMSG to a finite deformation theory since the indentation depth in experiments can be as large as the film thickness. Contrary to indentation of bulk metals or soft metallic films on hard substrate, the micro-indentation hardness of a hard tungsten film on soft aluminum substrate decreases monotonically with the increasing depth of indentation, and it never approaches a constant (macroscopic hardness). It is also shown that the strain gradient effect in the soft aluminum substrate is insignificant, but that in the hard tungsten thin film is important in shallow indentation. The strain gradient effect in tungsten, however, disappears rapidly as the indentation depth increases because the intrinsic material length in tungsten is rather small.  相似文献   

13.
The effect of superimposed hydrostatic pressure on sheet metal formability is studied analytically and numerically. A tensile sample of power-law hardening material under superimposed hydrostatic pressure is first analyzed using the classical isotropic plasticity theory. It is demonstrated that the superimposed hydrostatic pressure p lowers the true tensile stress level at yielding by the amount of p, while material work-hardening is independent of p. It is showed, based on the Considère criterion, that the superimposed hydrostatic pressure increases the uniform strain. The effect of superimposed hydrostatic pressure on sheet metal formability is further assessed by constructing the Forming Limit Diagram (FLD) based on the M-K approach. It is found that the superimposed pressure delays the initiation of necking for any strain path. The difference in predicted FLDs between the superimposed hydrostatic pressure and the stress component normal to the sheet plane is demonstrated. Finally, the effect of superimposed hydrostatic pressure on fracture in round bars under tension is studied numerically using the finite element method, based on the Gurson damage model. The experimentally observed transition of the fracture surface, from the cup-cone mode under atmospheric pressure to a slant structure under high pressure, is numerically reproduced.  相似文献   

14.
15.
The state of stress in and around reinforcements governs a number of physical processes in composite (multi-phase) materials, including the initiation of damage by either reinforcement cracking or interfacial decohesion. The stresses in the reinforcements have been observed to depend on the spatial distribution of the reinforcements, although the exact correlation is unclear. The present work determines the reinforcement stress for different reinforcement arrangements, ranging from a linear array of three uniformly spaced particles, to random and clustered microstructures. The stress calculations for elastic matrices were undertaken using a computationally efficient iterative technique. The technique was validated by comparing the results to finite element models, and the range of validity was determined. For the three-particle arrangements, the maximum reinforcement stress was observed when the particles were close to each other along the line of loading (a vertical arrangement). On the other hand, when the particle arrangement made a large angle with the loading direction, the reinforcement stress was low. Similar observations were recorded for the random and clustered arrangements where the location of the maximum reinforcement stress coincided with a vertical arrangement. The present work also develops a scheme for determining ‘representative volume elements’ for composite micromechanical models, based on the length scales of stress field interactions. These observations can be used to rationalize damage evolution mechanisms in commercial composites, and aid the development of physically based failure models for such materials.  相似文献   

16.
In this study, a general framework is developed to analyze microscopic bifurcation and post-bifurcation behavior of elastoplastic, periodic cellular solids. The framework is built on the basis of a two-scale theory, called a homogenization theory, of the updated Lagrangian type. We thus derive the eigenmode problem of microscopic bifurcation and the orthogonality to be satisfied by the eigenmodes. The orthogonality allows the macroscopic increments to be independent of the eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation analysis based on the notion of comparison solids. By use of this framework, then, bifurcation and post-bifurcation analysis are performed for cell aggregates of an elastoplastic honeycomb subject to in-plane compression. Thus, demonstrating a basic, long-wave eigenmode of microscopic bifurcation under uniaxial compression, it is shown that the eigenmode has the longitudinal component dominant to the transverse component and consequently causes microscopic buckling to localize in a cell row perpendicular to the loading axis. It is further shown that under equi-biaxial compression, the flower-like buckling mode having occurred in a macroscopically stable state changes into an asymmetric, long-wave mode due to the sextuple bifurcation in a macroscopically unstable state, leading to the localization of microscopic buckling in deltaic areas.  相似文献   

17.
The effects of applied voltage on the electroelastic field concentrations ahead of electrodes in multilayer piezoelectric actuators were examined in a combined experimental and numerical investigation. Experiments were performed to measure the strain near internal and surface electrodes at various electrical loading conditions. The finite element method was also used to solve the coupled electro-elastic boundary value problem. The strain, stress and electric displacement concentrations were calculated and a non-linear behavior induced by localized polarization switching was discussed. A comparison of strain concentration was made between experiment and simulation.  相似文献   

18.
Two recently proposed developments of the Glass–Rubber constitutive model for glassy polymers treat the viscoplastic deformation as intrinsically anisotropic, and incorporate the kinetics of structural evolution. These features enable the model to capture better the distinctive features of glassy polymers’ constitutive response: post-yield strain-softening and strain-hardening and effects of pre-existing molecular orientation. They have been combined to form a new variant of the model, and the consequences for necking have been explored. Uniaxial extension of prismatic bars was simulated using the finite element method, employing a numerical implementation of the new model, with material parameters of polystyrene. Strain localization predicted with the new model was found to be systematically retarded as compared to predictions with the original (intrinsically isotropic) version of the model, for the same conditions. In particular, the effect of frozen-in molecular orientation was examined. This was found to retard strain localization for stretching parallel to the orientation direction, for both models. But the localization predicted with the new model was always significantly less pronounced than with the original model. Indeed, for sufficiently high pre-orientation (e.g. a uniaxial stretch of 2.2), localization could be effectively prevented with the new model, under conditions when otherwise failure by necking is predicted. Such results can all be explained in terms of a linear stability analysis. They suggest that all previous simulations of necking in glassy polymers made using intrinsically isotropic representations of polymer viscoplasticity may have over-predicted the rate of strain localization.  相似文献   

19.
The constitutive model for the unusual asymmetric hardening behavior of magnesium alloy sheet presented in a companion paper (Lee, M.G., Wagoner, R.H., Lee, J.K., Chung, K., Kim, H.Y., 2008. Constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheet, Int. J. Plasticity 24(4), 545–582) was applied to the springback prediction in sheet metal forming. The implicit finite element program ABAQUS was utilized to implement the developed constitutive equations via user material subroutine. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test of Numisheet (Numisheet ’2002 Benchmark Problem, 2002. In: Yang, D.Y., Oh, S.I., Huh, H., Kim, Y.H. (Eds.), Proceedings of 5th International Conference and Workshop on Numerical Simulation of 3D Sheet Forming Processes, Jeju, Korea) and 2D draw bend test. With the specially designed draw bend test the direct restraining force and long drawn distance were attainable, thus the measurement of the springback could be made with improved accuracy comparable with conventional U channel draw bend test. Besides the developed constitutive models, other models based on isotropic constitutive equations and the Chaboche type kinematic hardening model were also considered. Comparisons were made between simulated results by the finite element analysis and corresponding experiments and the newly proposed model showed enhanced prediction capability, which was also supported by the simple bending analysis adopting asymmetric stress–strain response.  相似文献   

20.
Elastic properties of model random three-dimensional open-cell solids   总被引:1,自引:0,他引:1  
Most cellular solids are random materials, while practically all theoretical structure-property relations are for periodic models. To generate theoretical results for random models the finite element method (FEM) was used to study the elastic properties of open-cell solids. We have computed the density (ρ) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (ν) for four different isotropic random models. The models were based on Voronoi tessellations, level-cut Gaussian random fields, and nearest neighbour node-bond rules. These models were chosen to broadly represent the structure of foamed solids and other (non-foamed) cellular materials. At low densities, the Young's modulus can be described by the relation Eρn. The exponent n and constant of proportionality depend on microstructure. We find 1.3<n<3, indicating a more complex dependence than indicated by periodic cell theories, which predict n=1 or 2. The observed variance in the exponent was found to be consistent with experimental data. At low densities we found that ν≈0.25 for three of the four models studied. In contrast, the Voronoi tessellation, which is a common model of foams, became approximately incompressible (ν≈0.5). This behaviour is not commonly observed experimentally. Our studies showed the result was robust to polydispersity and that a relatively large number (15%) of the bonds must be broken to significantly reduce the low-density Poission's ratio to ν≈0.33.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号