首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen enhanced localized plasticity (HELP) is a viable mechanism for hydrogen embrittlement supported by experimental observations. According to the HELP mechanism, hydrogen induced premature failures result from hydrogen induced plastic instability which leads to hydrogen assisted localized ductile processes. The objective of this work is to reveal the role of hydrogen in possibly localizing the macroscopic deformation into bands of intense shear using solid mechanics methodology. The hydrogen effect on material deformation is modeled through the hydrogen induced volume dilatation and the reduction in the local flow stress upon hydrogen dissolution into the lattice. Hydrogen in assumed to reside in both normal interstitial lattice sites (NILS) and reversible traps associated with the plastic deformation. The analysis of the plastic deformation and the conditions for plastic flow localization are carried out in plane strain uniaxial tension. For a given initial hydrogen concentration in the unstressed specimen, a critical macroscopic strain is identified at which shear localization commences.  相似文献   

2.
A macroscopic yield function for porous solids with pressure-sensitive matrices modeled by Coulomb's yield function was obtained by generalizing Gurson's yield function with consideration of the hydrostatic yield stress of a spherical thick-walled shell and by fitting the finite element results of the yield stresses of a voided cube. The macroscopic yield function is valid for the negative hydrostatic stress as well as for the positive hydrostatic stress. From the yield function, a plastic potential function for the porous solids was derived either for plastic normality flow or for plastic non-normality flow of the pressure-sensitive matrices. In addition, void nucleation was modeled by a normal distribution function with the macroscopic hydrostatic stress regarded as a controlling stress. This set of constitutive relations was implemented into a finite element code abaqus as a user material subroutine to analyze the cavitation and the deformation behavior of a rubber-modified epoxy around a crack tip under the Mode I plane strain conditions. By comparing the cavitation zone and the plastic zone obtained in the analysis with those observed in an experiment, the mean stress and the standard deviation for the void nucleation model could be determined. The cavitation and the deformation behavior of the rubber-modified epoxy were also analyzed around notches under four-point bending. The size and shape of the cavitation zone and the plastic zone were shown to be in good agreement with those observed in an experiment.  相似文献   

3.
We present micromechanical finite element results that quantify coalescence effects based upon temperature and different spatial arrangements of voids. We propose a critical intervoid ligament distance (ILD) to define void coalescence that is derived from micromechanical simulations in which void volume fraction evolves as a function of strain. Several parameters were varied using the temperature and strain rate internal variable plasticity model of Bammann–Chiesa–Johnson to determine the coalescence effects. The parameters include two types of materials with different work hardening rates (304L stainless steel and 6061T6 aluminum), three different temperatures (298, 400, and 600 K), several boundary conditions (force and displacement: uniaxial, plane strain, and biaxial), type of element used (plane strain and axisymmetric), different ILDs, and the number of voids (one and two void configurations). The present study provides a basis for macroscale modeling of coalescence which is briefly discussed.  相似文献   

4.
主要研究压力敏感材料中含内压的空洞长大,如页岩或者高分子材料。采用数值方法研究含内压空洞的对称和非对称球形和柱形胞元的宏观力学行为。结果表明,压力敏感性及其空洞内压将极大影响空洞的形核与长大。在球形胞元情形中未出现柱形胞元的单轴拉伸现象。将胞元有限变形的数值计算结果与基于近期提出的考虑压力敏感材料中空洞长大的塑形力学模型的分析结果进行了对比。  相似文献   

5.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

6.
The effect of particle clustering on void damage rates in a ductile material under triaxial loading conditions is examined using three-dimensional finite element analysis. An infinite material containing a regular distribution of clustered particles is modelled using a unit cell approach. Three discrete particles are introduced into each unit cell while a secondary population of small particles within the surrounding matrix is represented using the Gurson-Tvergaard-Needleman (GTN) constitutive equations. Deformation strain states characteristic of sheet metal forming are considered; that is, deep drawing, plane strain and biaxial stretching. Uniaxial tensile stress states with varying levels of superimposed hydrostatic tension are also examined.The orientation of a particle cluster with respect to the direction of major principal loading is shown to significantly influence failure strains. Coalescence of voids within a first-order particle cluster (consisting of three particles) is a stable event while collapse of inter-cluster ligaments leads to imminent material collapse through void-sheeting.  相似文献   

7.
An approximate macroscopic yield criterion for anisotropic porous sheet metals is adopted to develop a failure prediction methodology that can be used to investigate the failure of sheet metals under forming operations. Hill's quadratic anisotropic yield criterion is used to describe the matrix normal anisotropy and planar isotropy. The approximate macroscopic anisotropic yield criterion is a function of the anisotropy parameter R, defined as the ratio of the transverse plastic strain rate to the through-thickness plastic strain rate under in-plane uniaxial loading conditions. The Marciniak–Kuczynski approach is employed here to predict failure/plastic localization by assuming a slightly higher void volume fraction inside randomly oriented imperfection bands in a material element of interest. The effects of the anisotropy parameter R, the material/geometric inhomogeneities, and the potential surface curvature on failure/plastic localization are first investigated. Then, a non-proportional deformation history including relative rotation of principal stretch directions is identified in a critical element of a mild steel sheet under a fender forming operation given as a benchmark problem in the 1993 NUMISHEET conference. Based on the failure prediction methodology, the failure of the critical sheet element is investigated under the non-proportional deformation history. The results show that the gradual rotation of principal stretch directions lowers the failure strains of the critical element under the given non-proportional deformation history.  相似文献   

8.
9.
Based on an analysis of the deformation of an isolated void in a finite nonlinear viscous material, we establish the constitutive potentials for voided nonlinearly viscous materials, from which the related curves of the macroscopic stress, the average flow stress of the matrix material and the void volume fraction f are derived. However, the theory applies equally well to small strain, rate-independent J2 deformation theory solid. By considering the effects of the strain-hardening directly, a modifies Gurson equation are developed. Finally, we calculate the void relative growth-rates for the nonlinear materials, and in good agreement with existed numerical results.  相似文献   

10.
Void growth and coalescence in fcc single crystals were studied using crystal plasticity under uniaxial and biaxial loading conditions and various orientations of the crystalline lattice. A 2D plane strain unit cell with one and two cylindrical voids was employed using three-dimensional 12 potentially active slip systems. The results were compared to five representative orientations of the tensile axis on the stereographic triangle. For uniaxial tension conditions, the void volume fraction increase under the applied load is strongly dependent on the crystallographic orientation with respect to the tensile axis. For some orientations of the tensile axis, such as [1 0 0] or [1 1 0], the voids exhibited a growth rate twice as fast compared with other orientations ([1 0 0], [2 1 1]). Void growth and coalescence simulations under uniaxial loading indicated that during deformation along some orientations with asymmetry of the slip systems, the voids experienced rotation and shape distortion, due mainly to lattice reorientation. Coalescence effects are shown to diminish the influence of lattice orientation on the void volume fraction increase, but noteworthy differences are still present. Under biaxial loading conditions, practically all differences in the void volume fraction for different orientations of the tensile axes during void growth vanish. These results lead to the conclusion that at microstructural length scales in regions under intense biaxiality/triaxiality conditions, such as crack tip or notched regions, the plastic anisotropy due to the initial lattice orientation has only a minor role in influencing the void growth rate. In such situations, void growth and coalescence are mainly determined by the stress triaxiality, the magnitude of accumulated strain, and the spatial localization of such plastic strains.  相似文献   

11.
Shear band spacing in Zr-based bulk metallic glasses (BMGs) under dynamic loads is found to vary with position and local strain rate in the indented region. To investigate the dependence of shear band evolution characteristics on local strain rate and normal stress, a micromechanical model based on momentum diffusion is proposed. The thermo-mechanical model takes into account the normal stress dependence of yield stress, the free volume theory and the associated viscosity change within the shear band region. Temperature rise is obtained from the balance between the heat diffusion to the adjacent regions from a shear band and the heat generation due to the accumulated plastic work in a shear band. The parametric study has revealed that thermal effects play a minor role when the critical shear displacement is below 10 nm (as in nanoindentation) but become significant when the shear displacement accumulated in a shear band is of the order of hundreds of nanometers (as in uniaxial compression and in dynamic indentations). Finally, it is found that the normal stress plays a crucial role in the deformation behavior of BMGs by not only decreasing the time for shear band formation but also increasing the temperature rise significantly.  相似文献   

12.
This paper presents a micromechanical analysis of the macroscopic behaviour of natural clay. A microstructural stress–strain model for clayey material has been developed which considers clay as a collection of clusters. The deformation of a representative volume of the material is generated by mobilizing and compressing all the clusters along their contact planes. Numerical simulations of multistage drained triaxial stress paths on Otaniemi clay have been performed and compared the numerical results to the experimental ones in order to validate the modelling approach. Then, the numerical results obtained at the microscopic level were analysed in order to explain the induced anisotropy observed in the clay behaviour at the macroscopic level. The evolution of the state variables at each contact plane during loading can explain the changes in shape and position in the stress space of the yield surface at the macroscopic level, as well as the rotation of the axes of anisotropy of the material.  相似文献   

13.
Within continuum dislocation theory the plastic deformation of bicrystals under a mixed deformation of plane constrained uniaxial extension and shear is investigated with regard to the nucleation of dislocations and the dislocation pile-up near the phase boundaries of a model bicrystal with one active slip system within each single crystal. For plane uniaxial extension, we present a closed-form analytical solution for the evolution of the plastic distortion and of the dislocation network in the case of symmetric slip planes (i.e. for twins), which exhibits an energetic as well as a dissipative threshold for the dislocation nucleation. The general solution for non-symmetric slip systems is obtained numerically. For a combined deformation of extension and shear, we analyze the possibility of linearly superposing results obtained for both loading cases independently. All solutions presented in this paper also display the Bauschinger effect of translational work hardening and a size effect typical to problems of crystal plasticity.  相似文献   

14.
A phenomenological macroscopic plasticity model is developed for steels that exhibit strain-induced austenite-to-martensite transformation. The model makes use of a stress-state dependent transformation kinetics law that accounts for both the effects of the stress triaxiality and the Lode angle on the rate of transformation. The macroscopic strain hardening is due to nonlinear kinematic hardening as well as isotropic hardening. The latter contribution is assumed to depend on the dislocation density as well as the current martensite volume fraction. The constitutive equations are embedded in the framework of finite strain isothermal rate-independent anisotropic plasticity. Experimental data for an anisotropic austenitic stainless steel 301LN is presented for uniaxial tension, uniaxial compression, transverse plane strain tension and pure shear. The model parameters are identified using a combined analytical–numerical approach. Numerical simulations are performed of all calibration experiments and excellent agreement is observed. Moreover, we make use of experimental data from ten combined tension and shear experiments to validate the proposed constitutive model. In addition, punch and notched tension tests are performed to evaluate the model performance in structural applications with heterogeneous stress and strain fields.  相似文献   

15.
The overall behaviour of a periodic medium made up of a rock matrix crossed by one or several networks of plane parallel joints is examined from a micromechanical point of view. It is assumed that the rock matrix as well as the joints exhibit a perfect plastic behaviour. The localization within the elementary cell is shown to be of the Reuss type, the microscopic stress field being uniform. The macroscopic behaviour is therefore perfectly plastic. The macroscopic elastic stiffness, possibly nonlinear, is derived from those of the joints and matrix. The macroscopic yield criterion is obtained from the intersection of the matrix and joint criteria. If the normality rule is valid for the constituants, it applies at the macroscopic scale as well.  相似文献   

16.
Finite element (FE) calculations of a cylindrical cell containing a spherical hole have been performed under large strain conditions for varying triaxiality with three different constitutive models for the matrix material, i.e. rate independent plastic material with isotropic hardening, visco-plastic material under both isothermal and adiabatic conditions, and porous plastic material with a second population of voids nucleating strain controlled. The “mesoscopic” stress-strain and void growth responses of the cell are compared with predictions of the modified Gurson model in order to study the effects of varying triaxiality and strain rate on the critical void volume fraction. The interaction of two different sizes of voids was modelled by changing the strain level for nucleation and the stress triaxiality. The study confirms that the void volume fraction at void coalescence does not depend significantly on the triaxiality if the initial volume fraction of the primary voids is small and if there are no secondary voids. The strain rate does not affect fc either. The results also indicate that a single internal variable, f, is not sufficient to characterize the fracture processes in materials containing two different size-scales of void nucleating particles.  相似文献   

17.
The formation of multiple macroscopic shear bands is investigated as a mechanism of advanced plastic flow of polycrystalline metals. The overall deformation pattern and material characteristics are determined beyond the critical instant of ellipticity loss, without the need of introducing an internal length scale. This novel approach to the modelling of post-critical plastic deformation is based on the concept of a representative nonuniform solution in a homogeneous material. The indeterminacy of a post-critical representative solution is removed by eliminating unstable solution paths with the help of the energy criterion of path instability. It is shown that the use of micromechanically based, incrementally nonlinear corner theories of time-independent plasticity leads then to gradual concentration of post-critical plastic deformation. The volume fraction occupied by shear bands is found to have initially a well-defined, finite value insensitive to the mesh size in finite element calculations. Further deformation depends qualitatively on details of the constitutive law. In certain cases, the volume fraction of active bands decreases rapidly to zero, leading to material instability of dynamic type. However, for physically hardening materials with the yield-vertex effect, the localization volume typically remains finite over a considerable deformation range. At later stages of the plane strain simulation, differently aligned secondary bands are formed in a series of bifurcations.  相似文献   

18.
本文利用微观力学方法研究了金属基复合材料的常温蠕变和应力松弛,连续纤维在弹性粘塑性基体内单向铺设。本文的结果与实验结果符合较好。研究表明,纤维在轴向对基体的蠕变起到明显阻止作用,而在横向和剪切变形下的作用较小。在低应力水平下,复合材料的蠕变变形很小,在高应力水平时,蠕变变形明显甚至引起蠕变破坏。  相似文献   

19.
Materials get damaged under shear deformations. Edge cracking is one of the most serious damage to the metal rolling industry, which is caused by the shear damage process and the evolution of anisotropy. To investigate the physics of the edge cracking process, simulations of a shear deformation for an orthotropic plastic material are performed. To perform the simulation, this paper proposes an elasto-aniso-plastic constitutive model that takes into account the evolution of the orthotropic axes by using a bases rotation formula, which is based upon the slip process in the plastic deformation. It is found through the shear simulation that the void can grow in shear deformations due to the evolution of anisotropy and that stress triaxiality in shear deformations of (induced) anisotropic metals can develop as high as in the uniaxial tension deformation of isotropic materials, which increases void volume. This echoes the same physics found through a crystal plasticity based damage model that porosity evolves due to the grain-to-grain interaction. The evolution of stress components, stress triaxiality and the direction of the orthotropic axes in shear deformations are discussed.  相似文献   

20.
Predictions are made for the size effect on strength of a random, isotropic two-phase composite. Each phase is treated as an isotropic, elastic-plastic solid, with a response described by a modified deformation theory version of the Fleck-Hutchinson strain gradient plasticity formulation (Fleck and Hutchinson, J. Mech. Phys. Solids 49 (2001) 2245). The essential feature of the new theory is that the plastic strain tensor is treated as a primary unknown on the same footing as the displacement. Minimum principles for the energy and for the complementary energy are stated for a composite, and these lead directly to elementary bounds analogous to those of Reuss and Voigt. For the case of a linear hardening solid, Hashin-Shtrikman bounds and self-consistent estimates are derived. A non-linear variational principle is constructed by generalising that of Ponte Castañeda (J. Mech. Phys. Solids 40 (1992) 1757). The minimum principle is used to derive an upper bound, a lower estimate and a self-consistent estimate for the overall plastic response of a statistically homogeneous and isotropic strain gradient composite. Sample numerical calculations are performed to explore the dependence of the macroscopic uniaxial response upon the size scale of the microstructure, and upon the relative volume fraction of the two phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号