首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modal testing and analysis is well-established for linear systems. The objective of this paper is to progress toward a practical experimental modal analysis (EMA) methodology of nonlinear mechanical structures. In this context, nonlinear normal modes (NNMs) offer a solid theoretical and mathematical tool for interpreting a wide class of nonlinear dynamical phenomena, yet they have a clear and simple conceptual relation to the classical linear normal modes (LNMs). A nonlinear extension of force appropriation techniques is developed in this study in order to isolate one single NNM during the experiments. With the help of time-frequency analysis, the energy dependence of NNM modal curves and their frequencies of oscillation are then extracted from the time series. The proposed methodology is demonstrated using two numerical benchmarks, a two-degree-of-freedom system and a planar cantilever beam with a cubic spring at its free end.  相似文献   

2.
The dynamics of a linear periodic substructure, weakly coupled to an essentially non-linear attachment are studied. The essential (non-linearizable) non-linearity of the attachment enables it to resonate with any of the linearized modes of the subtructure leading to energy pumping phenomena, e.g., passive, one-way, irreversible transfer of energy from the substructure to the attachment. As a specific application the dynamics of a finite linear chain of coupled oscillators with a non-linear end attachment is examined. In the absence of damping, it is found that the dynamical effect of the non-linear attachment is predominant in neighborhoods of internal resonances between the attachment and the chain. When damping exists energy pumping phenomena are realized in the system. It is shown that energy pumping strongly depends on the topological structure of the non-linear normal modes (NNMs) of the underlying undamped system. This is due to the fact that energy pumping is caused by the excitation of certain damped invariant NNM manifolds that are analytic continuations for weak damping of NNMs of the underlying undamped system. The bifurcations of the NNMs of the undamped system help explain resonance capture cascades in the damped system. This is a series of energy pumping phenomena occurring at different frequencies, with sudden lower frequency transitions between sequential events. The observed multi-frequency energy pumping cascades are particularly interesting from a practical point of view, since they indicate that non-linear attachments can be designed to resonate and extract energy from an a priori specified set of modes of a linear structure, in compatibility with the design objectives.  相似文献   

3.
将加权ENO格式推广到非结构三角形网格上,构造了一类加权ENO有限体积格式,提出的插值多项式的构造方式,可以减少计算时间.对于出现的病态方程组,给出了解决方法.此外还给出了插值点的选取方式及加权因子的构造方法.结合三阶TVD Runge Kutta时间离散,对二维欧拉方程组进行了数值试验.  相似文献   

4.
5.
A vibrational analog of the superradiant quantum transition (SQT) in a classical system of weakly bound oscillators of van der Pole-Duffing (self-generators), in which the coupling element is a linear oscillator, is described. Such an analog is a strongly modulated oscillatory process of almost complete periodic energy exchange between the generators. This type of mode is alternative to nonlinear normal modes (NNM) and close in its character to limiting phase trajectories (LPTs), which have been introduced recently as applied to conservative systems, but in contrast to them, as the attractor. It is shown that the necessary condition of the transition to intense energy exchange in the classical system is the instability of one of the NNMs similarly to that when the condition of the superradiant transition is the instability of the ground state in a quantum model.  相似文献   

6.
数值散射是辐射传递方程近似算法中最常见的离散误差。本文主要讨论空间差分格式对有限体积法数值散射的影响。构造激光平行及倾斜入射的物理模型,验证和比较阶梯格式、中心差分格式及指数格式下温度场的计算精度及数值散射特性。计算结果表明,在激光平行入射与倾斜入射两种情况下,阶梯格式引起的的数值散射比菱形格式及指数格式要多,但其计算精度高于菱形及指数格式。不同激光入射条件下,各种差分格式表现出的数值散射分布有明显的差异。  相似文献   

7.
Non-linear dynamic problems governed by ordinary (ODE) or partial differential equations (PDE) are herein approached by means of an alternative methodology. A generalized solution named WEM by the authors and previously developed for boundary value problems, is applied to linear and non-linear equations. A simple transformation after selecting an arbitrary interval of interest T allows using WEM in initial conditions problems and others with both initial and boundary conditions. When dealing with the time variable, the methodology may be seen as a time integration scheme. The application of WEM leads to arbitrary precision results. It is shown that it lacks neither numerical damping nor chaos which were found to be present with the application of some of the time integration schemes most commonly used in standard finite element codes (e.g., methods of central difference, Newmark, Wilson-θ, and so on). Illustrations include the solution of two non-linear ODEs which govern the dynamics of a single-degree-of-freedom (s.d.o.f.) system of a mass and a spring with two different non-linear laws (cubic and hyperbolic tangent respectively). The third example is the application of WEM to the dynamic problem of a beam with non-linear springs at its ends and subjected to a dynamic load varying both in space and time, even with discontinuities, governed by a PDE. To handle systems of non-linear equations iterative algorithms are employed. The convergence of the iteration is achieved by takingn partitions of T. However, the values of T/n are, in general, several times larger than the usual Δt in other time integration techniques. The maximum error (measured as a percentage of the energy) is calculated for the first example and it is shown that WEM yields an acceptable level of errors even when rather large time steps are used.  相似文献   

8.
In the implementation of spectral difference (SD) method, the conserved variables at the flux points are calculated from the solution points using extrapolation or interpolation schemes. The errors incurred in using extrapolation and interpolation would result in instability. On the other hand, the difference between the left and right conserved variables at the edge interface will introduce dissipation to the SD method when applying a Riemann solver to compute the flux at the element interface. In this paper, an optimization of the extrapolation and interpolation schemes for the fourth order SD method on quadrilateral element is carried out in the wavenumber space through minimizing their dispersion error over a selected band of wavenumbers. The optimized coefficients of the extrapolation and interpolation are presented. And the dispersion error of the original and optimized schemes is plotted and compared. An improvement of the dispersion error over the resolvable wavenumber range of SD method is obtained. The stability of the optimized fourth order SD scheme is analyzed. It is found that the stability of the 4th order scheme with Chebyshev–Gauss–Lobatto flux points, which is originally weakly unstable, has been improved through the optimization. The weak instability is eliminated completely if an additional second order filter is applied on selected flux points. One and two dimensional linear wave propagation analyses are carried out for the optimized scheme. It is found that in the resolvable wavenumber range the new SD scheme is less dispersive and less dissipative than the original scheme, and the new scheme is less anisotropic for 2D wave propagation. The optimized SD solver is validated with four computational aeroacoustics (CAA) workshop benchmark problems. The numerical results with optimized schemes agree much better with the analytical data than those with the original schemes.  相似文献   

9.
We consider a linear cantilever beam attached to ground through a strongly nonlinear stiffness at its free boundary, and study its dynamics computationally by the assumed-modes method. The nonlinear stiffness of this system has no linear component, so it is essentially nonlinear and nonlinearizable. We find that the strong nonlinearity mostly affects the lower-frequency bending modes and gives rise to strongly nonlinear beat phenomena. Analysis of these beats proves that they are caused by internal resonance interactions of nonlinear normal modes (NNMs) of the system. These internal resonances are not of the classical type since they occur between bending modes whose linearized natural frequencies are not necessarily related by rational ratios; rather, they are due to the strong energy-dependence of the frequency of oscillation of the corresponding NNMs of the beam (arising from the strong local stiffness nonlinearity) and occur at energy ranges where the frequencies of these NNMs are rationally related. Nonlinear effects start at a different energy level for each mode. Lower modes are influenced at lower energies due to larger modal displacements than higher modes and thus, at certain energy levels, the NNMs become rationally related, which results in internal resonance. The internal resonances of NNMs are studied using a reduced order model of the beam system. Then, a nonlinear system identification method is developed, capable of identifying this type of strongly nonlinear modal interactions. It is based on an adaptive step-by-step application of empirical mode decomposition (EMD) to the measured time series, which makes it valid for multi-frequency beating signals. Our work extends an earlier nonlinear system identification approach developed for nearly mono-frequency (monochromatic) signals. The extended system identification method is applied to the identification of the strongly nonlinear dynamics of the considered cantilever beam with the local strong nonlinear stiffness at its free end.  相似文献   

10.
It is of utmost interest to control the divergence of the magnetic flux in simulations of the ideal magnetohydrodynamic equations since, in general, divergence errors tend to accumulate and render the schemes unstable. This paper presents a higher-order extension of the locally divergence-preserving procedure developed in Torrilhon [M. Torrilhon, Locally divergence-preserving upwind finite volume schemes for magnetohydrodynamic equations, SIAM J. Sci. Comput. 26 (2005) 1166–1191]; a fourth-order accurate local redistribution of the numerical magnetic field fluxes of a finite volume base scheme is introduced. The redistribution ensures that a fourth-order accurate discrete divergence operator is preserved to round off errors when applied to the cell averages of the magnetic flux density. The developed procedure is applicable to generic semi-discrete finite volume schemes and its purpose is to stabilize the schemes using a local procedure that respects the accuracy of the base scheme to a greater extent than the previous second-order achievements. Numerical experiments that demonstrate the properties of the new procedure are also presented.  相似文献   

11.
侯静  姜文汉  凌宁 《光学学报》2003,23(6):50-755
利用直接波前斜率法和变形镜的电压一面形响应特性,研究了常规自适应光学系统和共光路/共模块(CP/CM)自适应光学系统中哈特曼波前传感器与变形镜的对准误差。常规自适应光学系统中,可以用重新测量变形镜的影响函数以减小对准误差的影响,虽并不能消除其影响,但系统都会有很大的调整容差;共光路/共模块自适应光学系统中采用不同的双哈特曼数据处理方法,哈特曼波前传感器与变形镜的对准精度对系统校正能力影响是不同的,采用加修正因子斜率融合法和电压融合法由于在数据融合时考虑了两台哈特曼传感器与变形镜对准的差异,所以对准误差的影响与在常规自适应光学中相同,系统都会有很大的调整容差,而采用直接斜率融合法的共光路/共模块系统由于是建立在两台哈特曼传感器完全一致的假设基础上,所以对对准精度的要求是很高的。分析过程中给出了相应的数值计算结果。  相似文献   

12.
The goal of this paper is to generalize the well-balanced approach for non-equilibrium flow studied by Wang et al. (2009) [29] to a class of low dissipative high-order shock-capturing filter schemes and to explore more advantages of well-balanced schemes in reacting flows. More general 1D and 2D reacting flow models and new examples of shock turbulence interactions are provided to demonstrate the advantage of well-balanced schemes. The class of filter schemes developed by Yee et al. (1999) [33], Sjögreen and Yee (2004) [27] and Yee and Sjögreen (2007) [38] consist of two steps, a full time step of spatially high-order non-dissipative base scheme and an adaptive non-linear filter containing shock-capturing dissipation. A good property of the filter scheme is that the base scheme and the filter are stand-alone modules in designing. Therefore, the idea of designing a well-balanced filter scheme is straightforward, i.e. choosing a well-balanced base scheme with a well-balanced filter (both with high-order accuracy). A typical class of these schemes shown in this paper is the high-order central difference schemes/predictor–corrector (PC) schemes with a high-order well-balanced WENO filter. The new filter scheme with the well-balanced property will gather the features of both filter methods and well-balanced properties: it can preserve certain steady-state solutions exactly; it is able to capture small perturbations, e.g. turbulence fluctuations; and it adaptively controls numerical dissipation. Thus it shows high accuracy, efficiency and stability in shock/turbulence interactions. Numerical examples containing 1D and 2D smooth problems, 1D stationary contact discontinuity problem and 1D turbulence/shock interactions are included to verify the improved accuracy, in addition to the well-balanced behavior.  相似文献   

13.
In this article, a geometric technique to construct numerical schemes for partial differential equations (PDEs) that inherit Lie symmetries is proposed. The moving frame method enables one to adjust the numerical schemes in a geometric manner and systematically construct proper invariant versions of them. To illustrate the method, we study invariantization of the Crank-Nicolson scheme for Burgers’ equation. With careful choice of normalization equations, the invariantized schemes are shown to surpass the standard scheme, successfully removing numerical oscillation around sharp transition layers.  相似文献   

14.
The multiple scales method, developed for the systems with small non-linearities, is extended to the case of strongly non-linear self-excited systems. Two types of non-linearities are considered: quadratic and cubic. The solutions are expressed in terms of Jacobian elliptic functions. Higher order approximations, of solution as well as modulations of amplitude and phase, are derived. Comparisons to numerical simulations are provided and discussed.  相似文献   

15.
居鸿宾  沈孟育 《计算物理》1998,15(6):742-747
对差分格式进行优化处理可以提高其谱精度。与高精度(指Taylor展开精度)格式相比,优化格式放大因子的误差随波数的变化不是单调的,而是必然会出现极值点,这样就存在临界距离Rcr,在此距离内优化格式描述的数值波的积累误差小于高精度格式,而超出此距离后优化格式的误差反而大,对于非定常流及气动声学计算来说,控制差分格式的临界距离是必要的。一般的优化目标函数以每个时间推进步的误差为基础(即放大因子法),Rcr不能在优化过程中确定。对此进行分析,指出积累误差的重要性并提出以此为基础的新的优化目标函数,这样在对格式进行优化时可以直接指定临界距离,从而为控制谱精度提供方便。  相似文献   

16.
The application of a dissipative Galerkin scheme to the numerical solution of the Korteweg de Vries (KdV) and Regularised Long Wave (RLW) equations, is investigated. The accuracy and stability of the proposed schemes is derived using a localised Fourier analysis. With cubic splines as basis functions, the errors in the numerical solutions of the KdV equation for different mesh-sizes and different amounts of dissipation is determined. It is shown that the Galerkin scheme for the RLW equation gives rise to much smaller errors (for a given mesh-size), and allows larger steps to be taken for the integrations in time (for a specified error tolerance). Also, the interaction of two solitons is compared for the KdV and RLW equations, and several differences in their behaviour are found.  相似文献   

17.
In spectral-like resolution-WENO hybrid schemes,if the switch function takes more grid points as discontinuity points,the WENO scheme is often turned on,and the numerical solutions may be too dissipative.Conversely,if the switch function takes less grid points as discontinuity points,the hybrid schemes usually are found to produce oscillatory solutions or just to be unstable.Even if the switch function takes less grid points as discontinuity points,the final hybrid scheme is inclined to be more stable,provided the spectral-like resolution scheme in the hybrid scheme has moderate shock-capturing capability.Following this idea,we propose nonlinear spectral-like schemes named weighted group velocity control(WGVC)schemes.These schemes show not only high-resolution for short waves but also moderate shock capturing capability.Then a new class of hybrid schemes is designed in which the WGVC scheme is used in smooth regions and the WENO scheme is used to capture discontinuities.These hybrid schemes show good resolution for small-scales structures and fine shock-capturing capabilities while the switch function takes less grid points as discontinuity points.The seven-order WGVC-WENO scheme has also been applied successfully to the direct numerical simulation of oblique shock wave-turbulent boundary layer interaction.  相似文献   

18.
A mathematical model for a flexible arm undergoing large planar flexural deformations, continuously rotating under the effect of a hub torque and supported by a flexible base is developed. The position of a typical material point along the span of the arm is described using the inertial reference frame via a transformation matrix from the body co-ordinate system, which is attached to the flexible root of the rotating arm. The condition of inextensibility is employed to relate the axial and transverse deflections of the material point, within the beam body co-ordinate system. The position and velocity vectors obtained, after imposing the inextensibility conditions, are used in the kinetic energy expression while the exact curvature is used in the potential energy. Lagrangian dynamics in conjunction with the assumed modes method is utilized to derive, directly, the non-linear equivalent temporal equations of motion. The resulting non-linear model, which is composed of four coupled non-linear ordinary differential equations, is discussed, simulated and the results of this simulation are presented. The effects of the base flexibility are explored by comparing the resulting simulation results, for various flexibility coefficients, with previously published works of the authors. Moreover, the numerical results show that the base flexibility has a very important effect on the stability of rotating flexible arms that should be accounted for when simulating such systems.  相似文献   

19.
Effects of non‐equidistant grids on momentum conservation is studied for simple test cases of an electrostatic 1D PIC code. The aim is to reduce the errors in energy and momentum conservation. Assuming an exact Poisson solver only numerical errors for the particle mover are analysed. For the standard electric field calculation using a central‐difference scheme, artificial electric fields at the particle position are generated in the case when the particle is situated next to a cell size change. This is sufficient to destroy momentum conservation. A modified electric field calculation scheme is derived to reduce this error. Independent of the calculation scheme additional fake forces in a two‐particle system are found which result in an error in the total kinetic energy of the system. This contribution is shown to be negligible for many particle systems. To test the accuracy of the two electric field calculation schemes numerical tests are done to compare with an equidistant grid set‐up. All tests show an improved momentum conservation and total kinetic energy for the modified calculation scheme of the electric field. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
A three-dimensional non-linear time-marching method and numerical analysis for aeroelastic behaviour of an oscillating blade row is presented. The approach is based on the solution of the coupled fluid-structure problem in which the aerodynamic and structural equations are integrated simultaneously in time. In this formulation of a coupled problem, the interblade phase angle at which a stability (or instability) would occur is a part of the solution. The ideal gas flow through multiple interblade passage (with periodicity on the whole annulus) is described by the unsteady Euler equations in the form of conservative laws, which are integrated by use of the explicit monotonic second order accurate Godunov-Kolgan volume scheme and a moving hybrid H-H (or H-O) grid. The structure analysis uses the modal approach and 3-D finite element model of the blade. The blade motion is assumed to be a linear combination of modes shapes with the modal coefficients depending on time. The influence of the natural frequencies on the aerodynamic coefficient and aeroelastic coupled oscillations for the Fourth Standard Configuration is shown. The stability (instability) areas for the modes are obtained. It has been shown that interaction between modes plays an important role in the aeroelastic blade response. This interaction has an essentially non-linear character and leads to blade limit cycle oscillations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号