首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Editorial

Focus on Fourier transform ion cyclotron resonance mass spectrometry  相似文献   

2.
Aggregates of singly protonated peptides formed with a nanoelectrospray ion source have been observed in the gas phase using Fourier transform ion cyclotron resonance (FT-ICR). Employment of “soft” ion sampling conditions in the source, which were developed previously to generate water clusters of biomolecules, provides significant yields of aggregates of singly protonated GGDPG ([2GGDPG + 2H]2+), GGEPG ([2GGEPG + 2H]2+), and VEPIPY (2VEPIPY + 2H]2+). With peptide mixtures, heteroaggregates, e.g., [GGDPG + GGEPG + 2H]2+ have also been observed along with the homoaggregates. These weakly bound noncovalent complexes undergo facile exothermic dissociation into the corresponding singly protonated monomer species with normal operation of the electrospray ion source. For example, the aggregates were not observed in FT-ICR experiments utilizing a conventional electrospray ionization (ESI) or fast atom bombardment source or with a quadrupolar ion trap mass spectrometer equipped with a conventional ESI source. The formation and metastability of these aggregates are dependent on highly specific intermolecular hydrogen bonding between the monomers. The amino acid sequence (DPG) of GGDPG mimics the well-known β reverse turn of proteins and semiempirical calculations show that it provides excellent hydrogen bonding sites for a protonated N-terminus amino group. Support for this conjecture is provided by the failure to observe aggregate formation of singly protonated peptides with several larger peptides, including hexaglycine and hexaalanine.  相似文献   

3.
An ion cyclotron resonance (ICR) absorption spectrum has been obtained by exciting an ICR spectral segment with a fixed-frequency electric field pulse, followed by broad-band detection, digitization of the (time-domain) transient response, and digital Fourier transformation to produce the (frequency-domain) absorption spectrum. For a given signal-to-noise ratio and resolution, the FT-ICR method generates a spectrum in a time which is two orders of magnitude shorter than that required in conventional slow-sweep ICR detection. In the present example, a signal-to-noise ratio of 8:1 and a mass resolution of about 0.005 amu for CH4+ (from CH4 at a pressure of 8 X 10?7 torr) have been achieved, using a single data acquisition period of 25.6 msec.  相似文献   

4.
The patterns of gene expression, post-translational modifications, protein/biomolecular interactions, and how these may be affected by changes in the environment, cannot be accurately predicted from DNA sequences. Approaches for proteome characterization are generally based upon mass spectrometric analysis of in-gel digested two dimensional polyacrylamide gel electrophoresis (2-D PAGE) separated proteins, allowing relatively rapid protein identification compared to conventional approaches. This technique, however, is constrained by the speed of the 2-D PAGE separations, the sensitivity limits intrinsic to staining necessary for protein visualization, the speed and sensitivity of subsequent mass spectrometric analyses for identification, and the limited ability for accurate quantitative measurements based on differences in spot intensity. We are presently developing alternative approaches for proteomics based upon the combination of fast capillary electrophoresis, or other suitable chromatographic separations, and the high mass accuracy and sensitivity obtainable with unique Fourier transform ion cyclotron resonance (FTICR) mass spectrometers available at our laboratory. Several approaches are presently being pursued; one based upon the analysis of intact proteins and the second upon approaches for global protein digestion and accurate peptide mass analysis. Quantitation of protein/peptide levels are based on using two or more stable-isotope labeled versions of proteomes which are combined to obtain precise quantitation of relative protein abundances. We describe the status of our efforts towards the development of a high-throughput proteomics capability and present initial results for application to several microorganisms and discuss our efforts for extending the developed capability to mammalian proteomes.  相似文献   

5.
Fourier-transform ion cyclotron resonance instrumentation is uniquely applicable to an unusual new ion chemistry, electron capture dissociation (ECD). This causes nonergodic dissociation of far larger molecules (42 kDa) than previously observed (<1 kDa), with the resulting unimolecular ion chemistry also unique because it involves radical site reactions for similarly larger ions. ECD is highly complementary to the well known energetic methods for multiply charged ion dissociation, providing much more extensive protein sequence information, including the direct identification of N- versus C-terminal fragment ions. Because ECD only excites the molecule near the cleavage site, accompanying rearrangements are minimized. Counterintuitively, cleavage of backbone covalent bonds of protein ions is favored over that of noncovalent bonds; larger (>10 kDa) ions give far more extensive ECD if they are first thermally activated. This high specificity for covalent bond cleavage also makes ECD promising for studying the secondary and tertiary structure of gaseous protein ions caused by noncovalent bonding.  相似文献   

6.
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) achieves high resolution and mass accuracy, allowing the identification of the raw chemical formulae of ions in complex samples. Using ion isolation and fragmentation (MS/MS), we can obtain more structural information, but MS/MS is time- and sample-consuming because each ion must be isolated before fragmentation. In 1987, Pfändler et al. proposed an experiment for 2D FT-ICR MS in order to fragment ions without isolating them and to visualize the fragmentations of complex samples in a single 2D mass spectrum, like 2D NMR spectroscopy. Because of limitations of electronics and computers, few studies have been conducted with this technique. The improvement of modern computers and the use of digital electronics for FT-ICR hardware now make it possible to acquire 2D mass spectra over a broad mass range. The original experiments used in-cell collision-induced dissociation, which caused a loss of resolution. Gas-free fragmentation modes such as infrared multiphoton dissociation and electron capture dissociation allow one to measure high-resolution 2D mass spectra. Consequently, there is renewed interest to develop 2D FT-ICR MS into an efficient analytical method. Improvements introduced in 2D NMR spectroscopy can also be transposed to 2D FT-ICR MS. We describe the history of 2D FT-ICR MS, introduce recent improvements, and present analytical applications to map the fragmentation of peptides. Finally, we provide a glossary which defines a few keywords for the 2D FT-ICR MS field.  相似文献   

7.
The internal energy of protonated leucine enkephalin has been manipulated in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with two newly designed pump-probe experiments. Blackbody infrared radiation was applied to pump an ion population into a well-defined internal energy distribution below the dissociation threshold. Following this pumping stage, the internal energy distribution was probed using on-resonance collisional activation to dissociate the ions. These pump-probe experiments were carried out in two different ways: (a) using on-resonance collisional activation with variable kinetic energies to dissociate the ions at a constant initial ion temperature (determining the precursor ion survival percentage as a function of kinetic energy) and (b) using on-resonance collisional activation with a constant kinetic energy to dissociate the ions at variable initial ion temperatures (to investigate the ion survival yield-initial ion temperature dependence). Using this approach, a detailed study of the effects of the initial ion temperature, the probing kinetic energy and the internal energy loss rate on the effective conversion efficiency of (laboratory-frame) kinetic energy to internal energy was conducted. This conversion efficiency was found to be dependent on the initial ion temperature. Depending on the experimental conditions the conversion efficiency (for collisions with argon) was estimated to be about 4.0 +/- 1.7%, which agrees with that obtained from a theoretical modeling. Finally, the reconstructed curves of the ion survival yield versus the mode of the (final) total internal energy distribution of the activated ion population (after pump and probe events) at different pump-probe conditions reveal the internal energy content of the activated ions.  相似文献   

8.
A novel electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer based on a 7-T superconducting magnet was developed for high-resolution accurate mass measurements of large biomolecules. Ions formed at atmospheric pressure using electrospray ionization (ESI) were transmitted (through six differential pumping stages) to the trapped ion cell maintained below 10?9 torr. The increased pumping speed attainable with cryopumping (> 105 L/s) allowed brief pressure excursions to above 10?4 torr, with greatly enhanced trapping efficiencies and subsequent short pumpdown times, facilitating high-resolution mass measurements. A set of electromechanical shutters were also used to minimize the effect of the directed molecular beam produced by the ES1 source and were open only during ion injection. Coupled with the use of the pulsed-valve gas inlet, the trapped ion cell was generally filled to the space charge limit within 100 ms. The use of 10–25 ms ion injection times allowed mass spectra to be obtained from 4 fmol of bovine insulin (Mr 5734) and ubiquitin (Mr 8565, with resolution sufficient to easily resolve the isotopic envelopes and determine the charge states. The microheterogeneity of the glycoprotein ribonuclease B was examined, giving a measured mass of 14,898.74 Da for the most abundant peak in the isotopic envelope of the normally glycosylated protein (i.e., with five mannose and two N-acetylglucosamine residues (an error of approximately 2 ppm) and an average error of approximately 1 ppm for the higher glycosylated and various H3PO4 adducted forms of the protein. Time-domain signals lasting in excess of 80 s were obtained for smaller proteins, producing, for example, a mass resolution of more than 700,000 for the 4+ charge state (m/z 1434) of insulin.  相似文献   

9.
In electrospray ionization (ESI) quadrupole ion trap and Fourier transform ion cyclotron resonance mass spectrometry, certain fragment ions (e.g. acylium ions) generated either during the ion transportation process (in the source interface region) or in the ion trap are found to undergo ion--molecule reactions with ESI solvent molecules (water, acetonitrile and aliphatic alcohols) to form adduct species. These unexpected solvated fragment ions severely complicate the interpretation of mass spectrometic data. High-resolution accurate mass measurements are important in establishing the elemental compositions of these adduct species and preventing erroneous data interpretation.  相似文献   

10.
Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethylcyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS.  相似文献   

11.
A new method for application of quadrupolar excitation to the trapped ion cell of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is presented. Quadrupolar excitation is conventionally applied to the two pairs of opposed electrodes that normally perform the excitation and detection functions in the FTICR experiment. Symmetry arguments and numerically calculated isopotential contours within the trapped ion cell lead to the conclusion that quadrupolar excitation can be applied to a single pair of opposed side electrodes. Examples of effective quadrupolar axialization via this method include a sevenfold signal-to-noise enhancement derived from 50 remeasurements of a single population of trapped bovine insulin ions and the selective isolation of a single charge state of horse heart myoglobin after an initial measurement that revealed the presence of 14 charge states.  相似文献   

12.
The fragmentations of four strychnos alkaloids have been investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the positive ion mode. Experiments using multi-stage tandem mass spectrometry (ESI-FT-ICR-MSn) allowed us to obtain precise elemental compositions of product ions at high mass resolution. The experimental data demonstrated that the nitrogen bridge and the coordinated oxygen atom on the nitrogen bridge in the alkaloid compounds were the active sites in the MS2 fragmentations. The loss of CH3 or the OCH3 group in those alkaloids, which have an OCH3 substituent, was the dominant fragmentation mode in the MS3 fragmentations. Logical fragmentation schemes for strychnos alkaloids have been proposed and these should be useful for the identification of these compounds.  相似文献   

13.
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications.  相似文献   

14.
MICRA, a compact Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer is described. The amount of miniaturisation in this device, based on a 1.24 T permanent magnet, remains compatible with genuine FT-ICR performance and analytical power in the mass range 2-1000 m/z, with a mass resolving power of 73,000 at mass 132. A first application of the transportability is the repetitive coupling of MICRA with a large-scale source of IR photons, the free electron laser CLIO.  相似文献   

15.
A new experimental method has been developed to probe ion/molecule reactions at gas pressures up to 0. 1 torr. A Fourier transform ion cyclotron resonance (FTICR) mass spectrometer has been constructed to trap ions within the trapped ion cell at these pressures for time intervals up to several hundred milliseconds, allowing the ions to undergo several million collisions. Multiple pulsed valves inject the gaseous reagents in brief, high pressure bursts. A unique, high conductance vacuum chamber rapidly reduces the gas pressure from as high as 0.01 torr to near background pressures in 2–5 s for optimum operation of the FTICR for identifying the ionic products. A pressure of 0.1 torr is attainable but results in slower gas evacuation. High pressure operation of this instrument is demonstrated for ion chemistry in silane, argon, and silicon tetrafluoride. Pressures are sufficiently high to allow termolecular formation of adducts with the trapped ion cell. Negative ion formation in silane has greatly improved efficiency due to the high pressure ionization. Trace impurities at the ppm level in argon and silicon tetrafluoride are detected through chemical ionization afforded by the large number of ion/molecule collisions.  相似文献   

16.
Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was coupled with atmospheric pressure photoionization (APPI) for the first time and used for the analysis of several corticosteroids.1 The analytes showed excellent response using APPI when compared with both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). APPI has the advantage of requiring less heat for desolvation, resulting in less thermal degradation of the analytes and higher signal-to-noise than APCI. In terms of ultimate sensitivity, APPI is more efficient than either ESI or APCI for the analysis of corticosteroids. With some compounds, the high-resolution capability of FTICRMS was necessary to obtain an accurate mass due to contributions of the M(+.) (13)C isotope in the [M+H](+) ion peak.  相似文献   

17.
Electron capture dissociation (ECD) of polypeptides has been demonstrated using a commercially available 3 Tesla Fourier transform ion cyclotron resonance (FTICR) instrument. A conventional rhenium filament, designed for high-energy electron impact ionisation, was used to effect ECD of substance P, bee venom melittin and bovine insulin, oxidised B chain. A retarding field analysis of the effective electron kinetic energy distribution entering the ICR cell suggests that one of the most important parameters governing ECD for this particular instrument is the need to employ low trapping plate voltages. This is shown to maximise the abundance of low-energy electrons. The demonstration of ECD at this relatively low magnetic field strength could offer the prospect of more routine ECD analysis for the wider research community, given the reduced cost of such magnets and (at least theoretically) the greater ease of electron/ion cloud overlap at lower field.  相似文献   

18.
The reactivity of 10 charged phenyl radicals toward several amino acids was examined in the gas phase in a dual-cell Fourier transform ion cyclotron resonance mass spectrometer. All radicals abstract a hydrogen atom from the amino acids, as expected. The most electrophilic radicals (with the greatest calculated vertical electron affinities (EA) at the radical site) also react with these amino acids via NH(2) abstraction (a nonradical nucleophilic addition-elimination reaction). Both the radical (hydrogen atom abstraction) and nonradical (NH(2) abstraction) reaction efficiencies were found to increase with the electrophilicity (EA) of the radical. However, NH(2) abstraction is more strongly influenced by EA. In contrast to an earlier report, the ionization energies of the amino acids do not appear to play a general reactivity-controlling role. Studies using several partially deuterium-labeled amino acids revealed that abstraction of a hydrogen atom from the α-carbon is only preferred for glycine; for the other amino acids, a hydrogen atom is preferentially abstracted from the side chain. The electrophilicity of the radicals does not appear to have a major influence on the site from which the hydrogen atom is abstracted. Hence, the regioselectivity of hydrogen atom abstraction appears to be independent of the structure of the radical but dependent on the structure of the amino acid. Surprisingly, abstraction of two hydrogen atoms was observed for the N-(3-nitro-5-dehydrophenyl)pyridinium radical, indicating that substituents on the radical not only influence the EA of the radical but also can be involved in the reaction. In disagreement with an earlier report, proline was found to display several unprecedented reaction pathways that likely do not proceed via a radical mechanism but rather by a nucleophilic addition-elimination mechanism. Both NH(2) and (15)NH(2) groups were abstracted from lysine labeled with (15)N on the side chain, indicating that NH(2) abstraction occurs both from the amino terminus and from the side chain. Quantum chemical calculations were employed to obtain insights into some of the reaction mechanisms.  相似文献   

19.
The experimental Fourier transform ion cyclotron resonance (FT/ICR) frequency range has been extended to 107 MHz. We report the observation of FT/ICR signals from electron-ionized species of mass-to-charge ratio 8, 7, 6, 5, 4, 3, 2, and 1 μ per elementary charge. We show that moderately high charge states of atomic ions (e.g., N3+) are easily generated and detected. Several applications for high-frequency FT/ICR mass spectrometry are proposed and discussed.  相似文献   

20.
The interpretation of mass spectra is a key process during compound identification, and the combination of tandem mass spectrometry (MS/MS) with high-accuracy mass measurements may deliver crucial information on the identity of a compound. Obtaining accurate mass data of fragment ions in MS/MS reveals the particular problem of mass calibration when a lockmass, which is frequently used to obtain accurate masses in MS, is absent. An alternative technique is to recalibrate the MS/MS spectrum using a reference MS/MS spectrum acquired under the same conditions. We have tested and validated this approach using a hybrid quadrupole/orthogonal acceleration reflectron-type time-of-flight (TOF) mass spectrometer. The results were compared with those obtained under similar conditions on a Fourier transform ion cyclotron resonance (FT-ICR) instrument. We found that the mass accuracy observed with such an "external" recalibration on the TOF instrument in MS/MS is identical to what can be obtained on a similar instrument operating in one-dimensional MS mode using the lockmass technique. However, mass accuracy in both cases is one order of magnitude inferior to that obtained using FTMS, and also inferior to that observed using sector field MS when operated at comparable resolution. Nevertheless, for small (<200 Da) molecules, this mass accuracy was still sufficient to have the "true" elemental composition identified as the first hit in about 70% of all cases. It was possible to elucidate the fragmentation mechanism of eight azaheterocycles containing a pyridine moiety, where the accurate mass data from the TOF instrument allowed distinction between two alternative fragmentation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号