首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The infrared absorption spectra of 55 lactic acid bacteria belonging to the genera Lactobacillus, Weissella and Carnobacterium were obtained and mathematically analyzed. Sixteen reference strains and 39 food strains isolated from meat and meat products and belonging to the genera Lactobacillus (6 species), Weissella (3 species) and Carnobacterium (2 species) were processed under standardized conditions and their medium infrared spectra obtained using Fourier-transform infrared (FT-IR) spectroscopy. Reproducibility indexes and similarities between FT-IR spectra were calculated using modified correlation coefficients to detect the ranges with the best reproducibility and discrimination properties. Hierarchical cluster analysis and stepwise discriminant analysis (SDA) were subsequently carried out to detect classes and create library groups. Reference strains could be distinguished on the basis of their spectral data and their clustering was in agreement with differences in chemical composition of the cell wall. For the 39 food isolates, the capability of two identification systems was compared. Unknown strains were identified (a) using the linear functions obtained from SDA (canonical variables) of the variables that provide the best discrimination of spectra, and (b) by calculating a differentiation index when a range of the unknown's transformed IR spectrum was compared to all spectra included in a reference library. The system based on the differentiation index obtained a higher rate of identification, allowing for detection of outliers. FT-IR spectroscopy is shown to afford additional information to phenotypic and genotypic data which may help to establish a more robust taxonomic classification.  相似文献   

2.
This study investigated the organic and inorganic constituents of healthy leaves and Candidatus Liberibacter asiaticus (CLas)-inoculated leaves of citrus plants. The bacteria CLas are one of the causal agents of citrus greening (or Huanglongbing) and its effect on citrus leaves was investigated using laser-induced breakdown spectroscopy (LIBS) combined with chemometrics. The information obtained from the LIBS spectra profiles with chemometrics analysis was promising for the construction of predictive models to identify healthy and infected plants. The major, macro- and microconstituents were relevant for differentiation of the sample conditions. The models were then applied to different inoculation times (from 1 to 8 months). The models were effective in the classification of 82-97% of the diseased samples with a 95% significance level. The novelty of this method was in the fingerprinting of healthy and diseased plants based on their organic and inorganic contents.  相似文献   

3.
Previous work using infrared spectroscopy has shown potential for rapid discrimination between bacteria in either their sporulated or vegetative states, as well as between bacteria and other common interferents. For species within one physiological state, however, distinction is far more challenging, and requires chemometrics. In the current study, we have narrowed the field of study by eliminating the confounding issues of vegetative cells as well as growth media and focused on using IR spectra to distinguish only between different species all in the sporulated state. Using principal component analysis (PCA) and a classification method based upon similarity measurements, we demonstrate a successful identification rate to the species level of 85% for Bacillus spores grown and sporulated in a glucose broth medium.  相似文献   

4.
偏最小二乘法在红外光谱识别茶叶中的应用   总被引:1,自引:0,他引:1  
采用漫反射傅立叶变换红外光谱(FTIR)法结合主成分分析(PCA)、偏最小二乘法(PLS)、簇类的独立软模式(SIMCA)识别法对十三种茶叶进行了分类判别研究。研究结果表明,通过多元散射校正(MSC)对原始光谱进行预处理,可以提高模式识别技术的分类判别效果。在此基础上,选取1 900~900 cm-1波长范围内的茶叶红外光谱建立识别模型,三种方法都得到了满意的分类判别效果。在对检验集中全部130个样本的判别中,PCA仅有两类样本无法判别,SIMCA的识别率和拒绝率都在90%以上,而PLS的识别效果最佳,全部样本都得到了正确的归类。这一研究结果表明傅立叶变换红外光谱法与化学计量学方法相结合可以实现茶叶品种的快速鉴别,这为茶叶的客观评审提供了一种新思路。  相似文献   

5.
Near-infrared (NIR) spectroscopy, in combination with chemometrics, enable the analysis of raw materials without time-consuming sample preparation methods. The aim of our work was to estimate critical parameters in the analytical specification of oxytetracycline, and consequently the development of a method for quantification and qualification of these parameters by NIR spectroscopy. A Karl Fischer (K.F.) titration to determine the water content, a colorimetric assay method, and Fourier transform-infrared (FT-IR) spectroscopy to identify the oxytetracycline base, were used as reference methods, respectively. Multivariate calibration was performed on NIR spectral data using principal component analysis (PCA), partial least-squares (PLS 1) and principal component regression (PCR) chemometric methods. Multivariate calibration models for NIR spectroscopy have been developed. Using PCA and the Soft Independent Modelling of Class Analogy (SIMCA) approach, we established the cluster model for the determination of sample identity. PLS 1 and PCR regression methods were applied to develop the calibration models for the determination of water content and the assay of the oxytetracycline base. Comparing the PLS and PCR regression methods we found out that the PLS is better established by NIR, especially as the spectroscopic data (NIR spectra) are highly collinear and there are many wavelengths due to non-selective wavelengths. The calibration models for NIR spectroscopy are convenient alternatives to the colorimetric method and to the K.F. method, as well as to FT-IR spectroscopy, in the routine control of incoming material.  相似文献   

6.
I. Esteban-Díez 《Talanta》2007,71(1):221-229
Near infrared spectroscopy (NIRS) was used to discriminate between arabica and robusta pure coffee varieties and blends of varied varietal composition. Direct orthogonal signal correction (DOSC) pre-processing method was applied on a set of 191 roasted coffee NIR spectra from both pure varieties and blends varying the final robusta content from 0 to 60% (w/w) in order to remove information unrelated to the actual varietal composition of samples. The corrected NIR spectra, as well as raw NIR spectra, were used to develop separate classification models using the potential functions method as class-modelling technique, exploring several options more or less restrictive according to the final number of considered categories. All constructed classification models were compared to evaluate their respective qualities and to show the suitability of applying DOSC method as pre-processing step for developing improved classification models for coffee varietal identification purposes.  相似文献   

7.
Methane-oxidizing bacteria (MOB) are a unique group of gram-negative bacteria that are proved to be biological indicator for gas prospecting since they utilize methane as a sole source of carbon and energy. Herein the feasibility of a novel and efficient gas prospecting method using Raman spectroscopy is studied. Confocal Raman spectroscopy is utilized to establish a Raman database of 11 species of methanotrophs and other closely related bacteria with similar morphology that generally coexist in the upper soil of natural gas. After strict and consistent spectral preprocessing, Raman spectra from the whole cell area are analyzed using the combination of principal component analysis (PCA) and Mahalanobis distance (MD) that allow unambiguous classification of the different cell types with an accuracy of 95.91%. The discrimination model based on multivariate analysis is further evaluated by classifying Raman spectra from independently cultivated bacteria, and achieves an overall accuracy of 94.04% on species level. Our approach using Raman spectroscopy in combination with statistical analysis of various gas reservoirs related bacteria provides rapid distinction that can potentially play a vital role in gas exploration.  相似文献   

8.
In this study we describe a methodology for diagnosing preclinical scrapie infection in hamsters from serum by a combination of Fourier-transform infrared (FT-IR) spectroscopy and chemometrics. Syrian hamsters (Mesocricetus auratus) were orally inoculated with the 263K scrapie agent, or mock-infected, and sera were obtained at 70, 100 and 130 days post infection (dpi) and at the terminal stage of scrapie (160 +/- 10 dpi). The analysis of hamster sera by FT-IR spectroscopy and artificial neural networks (ANN) confirmed results from earlier studies which had indicated the existence of disease-related structural and compositional alterations in the sera of infected donors in the terminal stage of scrapie [Schmitt et al. (2002) Anal Chem 74:3865-3868]. Experimental data from sera of animals in the preclinical stages of scrapie revealed subtle but reproducible spectral variations that permitted the identification of a preclinical scrapie infection at 100 dpi and later, but not at 70 dpi. The IR spectral features that were discriminatory for the preclinical stages differed from those of the terminally ill individuals. In order to reliably identify scrapie-negative as well as preclinical (100 and 130 dpi) and terminal scrapie-positive animals, a hierarchical classification system of independent artificial neural networks (ANN) was established. A "toplevel" ANN was designed which discriminates between animals in the terminal stage of scrapie and preclinical scrapie-positive or control animals. Spectra identified by the "toplevel" ANN as preclinical or controls were then further analyzed by a second classifier, the "sublevel" ANN. Using independent external validation procedures, the toplevel classifier produced an overall classification accuracy of 98%, while the sublevel classifier yielded an accuracy of 93%, indicating that scrapie-specific serum markers were also present for preclinical disease stages. Possible spectral markers responsible for the discrimination capacity of the two different ANNs are discussed.  相似文献   

9.
Near-infrared spectroscopy (NIRS) was applied for direct and rapid collection of characteristic spectra from Rhizoma Corydalis, a common traditional Chinese medicine (TCM), with the aim of developing a method for the classification of such substances according to their geographical origin. The powdered form of the TCM was collected from two such different sources, and their NIR spectra were pretreated by the wavelet transform (WT) method. A training set of such Rhizoma Corydalis spectral objects was modeled with the use of the least-squares support vector machines (LS-SVM), radial basis function artificial neural networks (RBF-ANN), partial least-squares discriminant analysis (PLS-DA) and K-nearest neighbors (KNN) methods. All the four chemometrics models performed reasonably on the basis of spectral recognition and prediction criteria, and the LS-SVM method performed best with over 95% success on both criteria. Generally, there are no statistically significant differences in all these four methods. Thus, the NIR spectroscopic method supported by all the four chemometrics models, especially the LS-SVM, are recommended for application to classify TCM, Rhizoma Corydalis, samples according to their geographical origin.  相似文献   

10.
Temperature-dependent near-infrared (NIR) spectroscopy has been developed and taken as a powerful technique for analyzing the structure of water and the interactions in aqueous systems. Due to the overlapping of the peaks in NIR spectra, it is difficult to obtain the spectral features showing the structures and interactions. Chemometrics, therefore, is adopted to improve the spectral resolution and extract spectral information from the temperature-dependent NIR spectra for structural and quantitative analysis. In this review, works on chemometric studies for analyzing temperature-dependent NIR spectra were summarized. The temperature-induced spectral features of water structures can be extracted from the spectra with the help of chemometrics. Using the spectral variation of water with the temperature, the structural changes of small molecules, proteins, thermo-responsive polymers, and their interactions with water in aqueous solutions can be demonstrated. Furthermore, quantitative models between the spectra and the temperature or concentration can be established using the spectral variations of water and applied to determine the compositions in aqueous mixtures.  相似文献   

11.
建立了一种基于近红外光谱分析技术的香菇产地鉴别方法。利用近红外光谱仪扫描不同主产地的香菇干样,获得样品的近红外漫反射光谱。利用偏最小二乘判别分析(PLSDA)分别建立了吉林、湖北、福建3个省份栽培香菇的产地判别模型,同时使用光谱预处理和波长筛选技术对判别模型进行优化,最后使用预测样品对模型进行验证。结果表明,使用原始光谱建立的模型能够初步实现对产地的判别,使用光谱预处理技术扣除光谱中的背景信息,同时利用波长筛选技术选择特定波长对模型进行优化后,可进一步提高预测正确率。该方法为香菇产地真实性溯源提供了一种新方法,对香菇产业发展具有重要的实际意义。  相似文献   

12.
Cellulose/Tamarind nut powder (TNP)/Silver nanoparticles (AgNPs) nanocomposites were prepared by in situ generation of AgNPs using regeneration method, followed by solution casting method. In this, TNP was used as a reducing agent. These nanocomposites were characterized using FT-IR spectroscopy, XRD and SEM and studied their mechanical properties and antibacterial activity for medical and packing applications. The FT-IR spectral studies revealed the involvement of functional groups – Polyphenols, Flavonoids and –OH in the process of reducing the metal salts into metal nanoparticles. These nanocomposites showed good antibacterial activity against five bacteria. Improved mechanical properties with good antibacterial activities make these composites suitable for medical, food and packaging applications.  相似文献   

13.
Normal (non-enhanced) Raman spectroscopy is used to determine the site of phosphorylation on a 13-residue peptide whose sequence derives from the cellular protein pp60(c-src) (protein tyrosine kinase). Raman spectra of serine, threonine and tyrosine amino acids and their phosphorylated derivatives are used to aid in the interpretation of peptide spectra. The purity of the synthetic peptides are confirmed by mass spectroscopy. Peptide Raman measurements are performed using the recently reported drop-coating deposition Raman (DCDR) method, followed by Savistky-Golay second derivative (SGSD) pre-processing and multivariate spectral classification using partial least squares (PLS) discriminant analysis. Leave-one-out training/testing results are displayed using a PLS psuedo-probability score plot and shown to facilitate error-free spectral determination of the site of phosphorylation.  相似文献   

14.
运用色谱指纹图谱与化学计量学方法对灵芝进行分类   总被引:2,自引:0,他引:2  
张景丽  罗霞  郑林用  许小燕  叶利明 《色谱》2009,27(6):776-780
采用95%乙醇为提取溶剂,运用高效液相色谱(HPLC)指纹图谱技术与化学计量学方法,对11个不同灵芝菌株子实体进行分类。通过相似度分析分别获得提取样品指纹图谱的13个共有峰及每个样品之间的相似度;以相对共有峰面积为分析参数,运用化学计量学方法包括聚类分析(HCA)、主成分分析(PCA)及判别分析(DA)对其进行分类,结果分为紫芝、赤芝和美国大灵芝3类。实验结果表明,用化学计量学的方法对灵芝样品的指纹图谱数据进行分析,是一种可用于其分类的科学方法。  相似文献   

15.
Correspondence analysis was used to classify the pattern-like FT-IR spectra of intact bacteria. The analysis was performed on a data set of approximately 80 normalized spectral derivatives of a selection of pathogenic bacteria. The correspondence analysis proved that the various different bacterial species were clustering in distinct regions of the correspondence maps suggesting that there do exist correlations between spectral data and biochemical/microbiological classification.  相似文献   

16.
Temperature constrained cascade correlation networks (TCCCNs) are computational neural networks that configure their own architecture, train rapidly, and give reproducible prediction results. TCCCN classification models were built using the Latin-partition method for five classes of pathogenic bacteria. Neural networks are problematic in that the relationships among the inputs (i.e., mass spectra) and the outputs (i.e., the bacterial identities) are not apparent. In this study, neural network models were constructed that successfully classified the targeted bacteria and the classification model was validated using sensitivity and target transformation factor analysis (TTFA). Without validation of the classification model, it is impossible to ascertain whether the bacteria are classified by peaks in the mass spectrum that have no causal relationships with the bacteria, but instead randomly correlate with the bacterial classes. Multiple single output network models did not offer any benefits when compared to single network models that had multiple outputs. A multiple output TCCCN model achieved classification accuracies of 96 +/- 2% and exhibited improved performance over multiple single output TCCCN models. Chemical ionization mass spectra were obtained from in situ thermal hydrolysis methylation of freeze-dried bacteria. Mass spectral peaks that pertain to the neural network classification model of the pathogenic bacterial classes were obtained by sensitivity analysis. A significant number of mass spectral peaks that had high sensitivity corresponded to known biomarkers, which is the first time that the significant peaks used by a neural network model to classify mass spectra have been divulged. Furthermore, TTFA furnishes a useful visual target as to which peaks in the mass spectrum correlate with the bacterial identities.  相似文献   

17.
该文利用近红外光谱技术结合化学计量学方法开发了不同品种绿茶的无损鉴别方法。通过近红外光谱技术得到了8个品种绿茶样品的近红外光谱,比较了单一以及优化组合光谱预处理方法对光谱的影响,利用无监督的主成分分析(PCA)与有监督的线性判别分析方法(LDA)分别构建了茶叶品种鉴别模型。结果表明:对比单一预处理方法,优化组合预处理具有更优的鉴别准确性。标准正态变量变换预处理消除了茶叶样品大小不均造成的光谱散射影响,一阶导数预处理实现了变动背景的消除,减少了基线漂移的影响,突出了图谱中的有效信息,采用二者相结合的预处理方式并结合无监督的主成分分析法可实现较为准确的绿茶样品种类鉴别分析,准确率达75.0%。此外,采用有监督的线性判别分析方法处理原始光谱数据,可达到100%的鉴别准确率,但该方法需提供类别的先验知识。因此,采用近红外光谱技术和化学计量学相结合的手段可实现不同品种绿茶的快速无损鉴别。  相似文献   

18.
Early, rapid, and reliable bacterial identification is of great importance in natural environments and in medical situations. Numerous studies have shown that Raman spectroscopy can be used to differentiate between different bacteria under controlled laboratory conditions. However, individual bacteria within a population exhibit macromolecular and metabolic heterogeneity over their lifetime. Therefore it is important to be able to identify and classify specific bacteria at different time points of the growth cycle. In this study, four species of bacteria were used to explore the capability of confocal Raman spectroscopy as a tool for the identification of (and discrimination between) diverse bacterial species at various growth time points. The results show that bacterial cells from different growth time points (as well as from a random growth phase) can be discriminated among the four species using principal component analysis (PCA). The results also show that bacteria selected from different growth phases can be classified with the help of a prediction model based on principal component and linear discriminant analysis (PC-LDA). These findings demonstrate that Raman spectroscopy with the application of a PC-LDA model rooted in chemotaxonomic analysis has potential for rapid sensing of microbial cells in environmental and clinical studies.  相似文献   

19.
Wang Y  Niu S  Liu S  Guo L  Che Y 《Organic letters》2010,12(21):5081-5083
Coniothiepinols A (1) and B (2) and coniothienol A (3), the first naturally occurring thiepinols (1 and 2) and thienol (3), have been isolated from the crude extract of an endolichenic fungus Coniochaeta sp. 1 possesses a unique 8-oxa-2-thia-bicyclo[3.2.1]octane skeleton, and its structure was assigned by NMR spectroscopy and X-ray crystallography. 1 showed significant activity against the gram-positive bacteria, Enterococcus faecium and Enterococcus faecalis.  相似文献   

20.
Changeable size moving window partial least squares (CSMWPLS) and searching combination moving window partial least squares (SCMWPLS) are proposed to search for an optimized spectral interval and an optimized combination of spectral regions from informative regions obtained by a previously proposed spectral interval selection method, moving window partial least squares (MWPLSR) [Anal. Chem. 74 (2002) 3555]. The utilization of informative regions aims to construct better PLS models than those based on the whole spectral points. The purpose of CSMWPLS and SCMWPLS is to optimize the informative regions and their combination to further improve the prediction ability of the PLS models. The results of their application to an open-path (OP)/FT-IR spectra data set show that the proposed methods, especially SCMWPLS can find out an optimized combination, with which one can improve, often significantly, the performance of the corresponding PLS model, in terms of low prediction error, root mean square error of prediction (RMSEP) with the reasonable latent variable (LVs) number, comparing with the results obtained using whole spectra or direct combination of informative regions for a compound. Regions consisting of the combinations obtained can easily be explained by the existence of IR absorption bands in those spectral regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号