首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four compounds of the Bi4Ti3O12/BiFeO3 system with the formula Bi2Bin?1(Ti,Fe)nO3n+3, n = 3, 4, 4.5 and 6 were studied using high‐temperature X‐ray powder diffraction and differential thermoanalysis methods. The crystal structure of the n = 6 phase was refined by the Rietveld method. An unusual behaviour of thermal expansion attributed to an orthorhombic‐to‐tetragonal transformation was revealed. For all the compounds, the lattice parameter c vs temperature T dependence has three regions in the range of T = 20 –750 °C interpreted as (1) expansion of the initial orthorhombic phase, (2) a pronounced structure reconstruction to the tetragonal phase, (3) an expansion of the tetragonal phase. The crystal structure of Bi7Ti3Fe3O21 based on 6‐layer‐perovskite blocks is proposed from X‐ray powder diffraction data. The Rietveld refinement of the structure in the orthorhombic space group F2mm with lattice parameters a = 5.4699(3), b = 5.4924(3), c = 57.551(3) Å (Rp = 9.4, Rwp = 11.9, Rexp = 4.7, RB = 4.4 %) shows that a distorted 6‐layer model fits the data of Bi7Ti3Fe3O21.  相似文献   

2.
The rare earth borides RERu4B4 (RE = Ce, Pr, Nd, Sm) were synthesized from the elements by arc‐melting and their crystal structures were studied on the basis of X‐ray powder and single‐crystal diffraction: LuRu4B4 type, I41/acd, a = 747.47(8), c = 1506.4(3) pm, wR2 = 0.0579, 362 F2 values for CeRu4B4, a = 751.3(2), c = 1507.1(5) pm, wR2 = 0.0724, 471 F2 values for PrRu4B4, a = 751.0(2), c = 1506.9(6) pm, wR2 = 0.0598, 384 F2 values for NdRu4B4, and a = 749.1(1), c = 1506.0(3) pm, wR2 = 0.0759, 413 F2 values for SmRu4B4, with 18 variables per refinement. Striking structural motifs of the RERu4B4 structures are Ru4 tetrahedra and B2 dumbbells with Ru–Ru and B–B distances of 271 and 180 pm in CeRu4B4. The intermediate valence of cerium leads to shorter Ce–Ru distances of 292 pm. CeRu4B4 behaves like a Pauli paramagnet with a small room temperature susceptibility of 1.5 × 10–4 emu · mol–1. Chemical bonding analyses shows substantial Ru–B and B–B bonding within the [Ru4B4] substructure.  相似文献   

3.
The crystal structure of Sr2ErRuO6 has been refined from neutron powder diffraction data collected at room temperature; space group P21/n, A = 5.7626(2), B = 5.7681(2), C = 8.1489(2) Å, β = 90.19(1)°. The structure is that of a distorted perovskite with a 1:1 ordered arrangement of Ru5+ and Er3+ over the 6-coordinate sites. Data collected at 4.2 K show the presence of long range antiferromagnetic order involving both Ru5+ and Er3+. The temperature dependence of the sublattice magnetizations is described. The crystal structure of Ca2NdRuO6 is also that of a distored perovskite (P21/n, A = 5.5564(1), B = 5.8296(1), C = 8.0085(1) β = 90.19(1)°. The β = 90.07(1)°) with a random distribution of Ca2+ and Nd3+ on the A site and a 1:1 ordered arrangement of Ca2+ and Ru5+ on the 6-coordinate B sites. The Ru5+ sublattice is antiferromagnetic at 4.2 K but there is no evidence for magnetic ordering of the Nd3+ ions. Ca2HoRuO6 is also a distorted perovskite (P21/n, A = 5.4991(1), B = 5.7725(1), C = 7.9381(2), β = 90.18(1)° at 4.2 K) with a cation distribution best represented as Ca1.46Ho0.54[Ca0.54Ho0.46Ru]O6. There is no ordering among the Ca3+ or Ho3+ ions on either the A or the B sites, but the Ca/Ho ions form a 1:1 ordered arrangement with Ru5+ on the B sites. At 4.2 K the Ru5+ ions adopt a Type I antiferromagnetic arrangement but there is no evidence of long range magnetic ordering among the Ho3+ ions.  相似文献   

4.
CsTi2Cl7‐II: Synthesis, Crystal Structure, and Magnetic Properties Single crystals of a second modification of CsTi2Cl7 (II) were obtained from the reaction of CsCl with TiCl2 and C6Cl6 (monoclinic, P21/m (No. 11), Z = 2, a = 635.4(3), b = 1163.0(2), c = 728.0(2) pm, β = 91.49(4)°). X‐ray pure powder samples are obtained from the binary components in 1 : 2 molar mixtures of CsCl and TiCl3 (melting at 900 °C and annealing at 550 °C below the melting point). The crystal structure of CsTi2Cl7‐II contains layers of densest packings of spheres of the compositions CsCl3 and Cl4, respectively, that are stacked alternatively in the [010] direction according to the sequence … ABAC … Ti3+ resides in one quarter of the octahedral holes between these layers in a way that confacial bioctahedra are connected via two common edges forming a zigzag chain running parallel to [010]. This structure with Ti3+–Ti3+ distances of 323 and 347 pm, respectively, is reflected in the antiferromagnetic behavior with interactions about sixteen times stronger within the dimers than between them (J = –490 cm–1 bzw. J = –30 cm–1).  相似文献   

5.
Powder samples and single crystals of the borides M0.5Ru6.5B3 (M = Cr, Mn, Co, Ni) were synthesized by arc‐melting the elements in a water‐cooled copper crucible under argon. The new phases were structurally characterized by single‐crystal and powder X‐ray diffraction as well as EDX‐Analyses. They crystallize in the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z = 2) and a pronounced site preferential M/Ru substitution is observed. Magnetic properties of the compounds were investigated and Pauli paramagnetism was observed in all cases. However, a strong temperature dependency is subsequently observed in Mn0.5Ru6.5B3 below 250 K, but no hint of magnetic ordering was found.  相似文献   

6.
Pb8FeIIFeF24 is triclinic: a = 20.118(3) Å, b = 5.597(1) Å, c = 9.440(2) Å, α = 89.75(2)°, β = 105.79(2)°, α = 89.38(2)°, Z = 2. The structure is solved in the unconventional space group C1 , from X-ray single crystal data using 1 641 independent reflections (R = 0.048, Rw = 0.051). It is built up from the stacking of two subnetworks along the a axis: fluorite-like [Pb8F10]n6n+ layers and infinite dimetallic [FeIIFeF14]n6n? double-chains of corner-sharing octahedra running along the b axis.  相似文献   

7.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

8.
Single crystals of Ti1.6Os2.4B2 and the solid solution Ti1–xFexOs2RhB2 (0 < x < 0.5) were synthesized by arc‐melting the elements in a water‐cooled copper crucible under an argon atmosphere. The new silver‐like phases, structurally characterized by single‐crystal X‐ray and EDX analyses, crystallize in the hexagonal Ti1.6Os1.4RuB2 structure type (space group (Nr. 189), Z = 3) and contain trigonal‐planar B4‐units and one‐dimensional chains of titanium or mixed titanium/iron atoms, respectively.  相似文献   

9.
There has been a great deal of recent interest in extended compounds containing Ru3+ and Ru4+ in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6 (X=Cl or Br), MA2MRuX6 (M=Na, K or Ag; X=Cl or Br) and MA3Ru2X9 (X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6 with Ru4+ crystallize in the trigonal space group and can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6 with M+ and Ru3+ crystallize in a structure related to BaNiO3 with alternating MX6 and RuX6 face‐shared octahedra forming linear chains in the trigonal space group. The compound MA3Ru2Br9 crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9 moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models.  相似文献   

10.
Four cyano‐bridged 1D bimetallic polymers have been prepared by using the paramagnetic building block trans‐[Ru(acac)2(CN)2]? (Hacac=acetylacetone): {[{Ni(tren)}{Ru(acac)2(CN)2}][ClO4]?CH3OH}n ( 1 ) (tren=tris(2‐aminoethyl)amine), {[{Ni(cyclen)}{Ru(acac)2(CN)2}][ClO4]? CH3OH}n ( 2 ) (cyclen=1,4,7,10‐tetraazacyclododecane), {[{Fe(salen)}{Ru(acac)2(CN)2}]}n ( 3 ) (salen2?=N,N′‐bis(salicylidene)‐o‐ethyldiamine dianion) and [{Mn(5,5′‐Me2salen)}2{Ru(acac)2(CN)2}][Ru(acac)2(CN)2]? 2 CH3OH ( 4 ) (5,5′‐Me2salen=N,N′‐bis(5,5′‐dimethylsalicylidene)‐o‐ethylenediimine). Compounds 1 and 2 are 1D, zigzagged NiRu chains that exhibit ferromagnetic coupling between NiII and RuIII ions through cyano bridges with J=+1.92 cm?1, z J′=?1.37 cm?1, g=2.20 for 1 and J=+0.85 cm?1, z J′=?0.16 cm?1, g=2.24 for 2 . Compound 3 has a 1D linear chain structure that exhibits intrachain ferromagnetic coupling (J=+0.62 cm?1, z J′=?0.09 cm?1, g=2.08), but antiferromagnetic coupling occurs between FeRu chains, leading to metamagnetic behavior with TN=2.6 K. In compound 4 , two MnIII ions are coordinated to trans‐[Ru(acac)2(CN)2]? to form trinuclear Mn2Ru units, which are linked together by π–π stacking and weak Mn???O* interactions to form a 1D chain. Compound 4 shows slow magnetic relaxation below 3.0 K with ?=0.25, characteristic of superparamagnetic behavior. The MnIII???RuIII coupling constant (through cyano bridges) and the MnIII???MnIII coupling constant (between the trimers) are +0.87 and +0.24 cm?1, respectively. Compound 4 is a novel single‐chain magnet built from Mn2Ru trimers through noncovalent interactions. Density functional theory (DFT) combined with the broken symmetry state method was used to calculate the molecular magnetic orbitals and the magnetic exchange interactions between RuIII and M (M=NiII, FeIII, and MnIII) ions. To explain the somewhat unexpected ferromagnetic coupling between low‐spin RuIII and high‐spin FeIII and MnIII ions in compounds 3 and 4 , respectively, it is proposed that apart from the relative symmetries, the relative energies of the magnetic orbitals may also be important in determining the overall magnetic coupling in these bimetallic assemblies.  相似文献   

11.
Hydrogenation (20 atm, 80°C, 2 h) of trinuclear Ru3(CO)12-nLn (L= tertiary phosphine or phosphite; n = 1–3) resulted in aggregation to give mixtures of H4Ru4(CO)12-n(L)n (n = 0–4), but Ru3(CO)10(L-L) (L-L=dppm, dpam) gave Ru3(μ-H)(μ3-PhECH2EPh2)(CO)9 (E = P, As, respectively) and Ru3(μ-H)23-PPh)(CO)8(PMePh2), and Ru3(μ-H)(μ3-SBut)(CO)9 gave Ru3(μ-H)23-S)(CO)9 by cleavage of PC, AsC, or SC bonds. Both types of reaction occurred with Ru3(CO)10(dppe) and [Ru3(CO)11]2(μ-dppe).  相似文献   

12.
Iron oxides, oxyhydroxydes and oxycarbonates derived from the layered Ruddlesden‐Popper (RP) structure form a large family of layered compounds. Besides the classical RP oxides Srn+1FenO3n+1, single intergrowths with the generic formulation (A,Sr)n+2FenO3n+2 and (A,Sr)n+3FenO3n+3 (A = Tl, Pb, Bi…) can be generated by increasing the multiplicity of the rock salt layers, and multiple intergrowths of these single intergrowths can be synthesized. Starting from oxygen deficient RP oxides such as n = 3 member Sr3NdFe3O9?δ, oxyhydroxydes hydrates and oxyhydroxydes such as Sr3NdFe3O7.5(OH)2·H2O and Sr3NdFe3O7.5(OH)2 can be created topotactically. Carbonate groups can also replace FeO6 octahedra in the n = 3 member Sr4Fe3O10, leading to layered oxycarbonates Sr4Fe3?x(CO3)xO10?4x with 0 < × ≤ 1. Shearing mechanism applied transversally to the layers allows collapsed structures to be generated such as the [Bi2Sr3Fe2O9]n [Bi4Sr6Fe2O16] family and the ferrite Bi13Ba2Sr25Fe13O66. Finally the replacement of rock salt SrO layers in the intergrowth Sr2FeO4 allows a new series of modulated structures [Sr8Fe12O26]·[Sr3Fe2O6]n to be generated, built up of layers of FeO5 bipyramids and tetragonal pyramids intergrown with perovskite layers.  相似文献   

13.
A systematic density functional theory and wave function theory investigation on the geometrical and electronic structures of the electron‐deficient diboron aurides B2Au (n = 1, 3, 5) and their mixed analogues B2HmAu (m + n = 3, 5) has been performed in this work. Ab initio theoretical evidences strongly suggest that bridging gold atoms exist in the ground states of C2v B2Au?(1A1), C2 B2Au(1A), C2v B2Au3(2B1), C2v B2Au(1A1), and Cs B2Au5(2A″), which all prove to possess a B? Au? B three‐center‐two‐electron (3c‐2e) bond. For B2HmAu (m + n = 3, 5) mixed anions, bridging B? Au? B units appear to be favored in energy over bridging B? H? B, as demonstrated by the fact that the Au‐bridged C2v B2H2Au? (1A1), Cs B2HAu (1A′), and C1 B2HAu (1A) lie clearly lower than their H‐bridged counterparts Cs B2H2Au? (1A′), C2 B2HAu (1A), and C2v B2HAu (1A1), respectively. Orbital analyses indicate that Au 6s makes about 92–96% contribution to the Au‐based orbitals in these B‐Au‐B 3c‐2e interactions, whereas Au 5d contributes 8–4%. The adiabatic and vertical detachment energies of the concerned anions have been calculated to facilitate their future experimental characterizations. The results obtained in this work establish an interesting 3c‐2e bonding model (B? Au? B) for electron‐deficient systems in which Au 6s plays a major role with non‐negligible contribution from Au 5d. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

14.
The new compounds [(acac)2Ru(μ‐boptz)Ru(acac)2] ( 1 ), [(bpy)2Ru(μ‐boptz)Ru(bpy)2](ClO4)2 ( 2 ‐(ClO4)2), and [(pap)2Ru(μ‐boptz)Ru(pap)2](ClO4)2 ( 3 ‐(ClO4)2) were obtained from 3,6‐bis(2‐hydroxyphenyl)‐1,2,4,5‐tetrazine (H2boptz), the crystal structure analysis of which is reported. Compound 1 contains two antiferromagnetically coupled (J=?36.7 cm?1) RuIII centers. We have investigated the role of both the donor and acceptor functions containing the boptz2? bridging ligand in combination with the electronically different ancillary ligands (donating acac?, moderately π‐accepting bpy, and strongly π‐accepting pap; acac=acetylacetonate, bpy=2,2′‐bipyridine pap=2‐phenylazopyridine) by using cyclic voltammetry, spectroelectrochemistry and electron paramagnetic resonance (EPR) spectroscopy for several in situ accessible redox states. We found that metal–ligand–metal oxidation state combinations remain invariant to ancillary ligand change in some instances; however, three isoelectronic paramagnetic cores Ru(μ‐boptz)Ru showed remarkable differences. The excellent tolerance of the bpy co ‐ ligand for both RuIII and RuII is demonstrated by the adoption of the mixed ‐ valent form in [L2Ru(μ‐boptz)RuL2]3+, L=bpy, whereas the corresponding system with pap stabilizes the RuII states to yield a phenoxyl radical ligand and the compound with L=acac? contains two RuIII centers connected by a tetrazine radical‐anion bridge.  相似文献   

15.
Fifteen new ternary antimonides T5T' 1‐xSb2+x were synthesized by reaction of the elemental components in an arc‐melting furnace. They crystallize with a tetragonal structure first reported for Nb5SiSn2 (space group I4/mcm, Z = 4.) A structure refinement from four‐circle X‐ray diffractometer data of Hf5Fe1‐xSb2+x (a = 1086.0(1) pm, c = 550.1(1) pm, R = 0.033 for 270 structure factors and 18 variable parameters) showed deviations from the ideal occupancy for two atomic sites, resulting in the composition Hf4.929(3)Fe0.67(1)Sb2.33(1). Structure refinements from X‐ray powder data resulted in the formula Ti5Ni0.45(2)Sb2.55(2), while no deviation from the ideal composition was observed for Ti5RhSb2. The crystal structures of these compounds are discussed together with those of related binary and ternary compounds.  相似文献   

16.
Tetrairon(III) single‐molecule magnets [Fe4(pPy)2(dpm)6] ( 1 ) (H3pPy=2‐(hydroxymethyl)‐2‐(pyridin‐4‐yl)propane‐1,3‐diol, Hdpm=dipivaloylmethane) have been deliberately organized into supramolecular chains by reaction with RuIIRuII or RuIIRuIII paddlewheel complexes. The products [Fe4(pPy)2(dpm)6][Ru2(OAc)4](BF4)x with x=0 ( 2 a ) or x=1 ( 2 b ) differ in the electron count on the paramagnetic diruthenium bridges and display hysteresis loops of substantially different shape. Owing to their large easy‐plane anisotropy, the s=1 diruthenium(II,II) units in 2 a act as effective seff=0 spins and lead to negligible intrachain communication. By contrast, the mixed‐valent bridges (s=3/2, seff=1/2) in 2 b introduce a significant exchange bias, with concomitant enhancement of the remnant magnetization. Our results suggest the possibility to use electron transfer to tune intermolecular communication in redox‐responsive arrays of SMMs.  相似文献   

17.
Cyanide‐bridged metal complexes of [Fe8M6(μ‐CN)14(CN)10 (tp)8(HL)10(CH3CN)2][PF6]4?n CH3CN?m H2O (HL=3‐(2‐pyridyl)‐5‐[4‐(diphenylamino)phenyl]‐1H‐pyrazole), tp?=hydrotris(pyrazolylborate), 1 : M=Ni with n=11 and m=7, and 2 : M=Co with n=14 and m=5) were prepared. Complexes 1 and 2 are isomorphous, and crystallized in the monoclinic space group P21/n. They have tetradecanuclear cores composed of eight low‐spin (LS) FeIII and six high‐spin (HS) MII ions (M=Ni and Co), all of which are bridged by cyanide ions, to form a crown‐like core structure. Magnetic susceptibility measurements revealed that intramolecular ferro‐ and antiferromagnetic interactions are operative in 1 and in a fresh sample of 2 , respectively. Ac magnetic susceptibility measurements of 1 showed frequency‐dependent in‐ and out‐of‐phase signals, characteristic of single‐molecule magnetism (SMM), while desolvated samples of 2 showed thermal‐ and photoinduced intramolecular electron‐transfer‐coupled spin transition (ETCST) between the [(LS‐FeII)3(LS‐FeIII)5(HS‐CoII)3(LS‐CoIII)3] and the [(LS‐FeIII)8(HS‐CoII)6] states.  相似文献   

18.
The heterometallic complexes trans ‐[Cp(dppe)FeNCRu(o ‐bpy)CNFe(dppe)Cp][PF6]n ( 1 [PF6]n , n =2, 3, 4; o ‐bpy=1,2‐bis(2,2′‐bipyridyl‐6‐yl)ethane, dppe=1,2‐bis(diphenylphosphino)ethane, Cp=1,3‐cyclopentadiene) in three distinct states have been synthesized and fully characterized. 1 3+[PF6]3 and 1 4+[PF6]4 are the one‐ and two‐electron oxidation products of 1 2+[PF6]2, respectively. The investigated results suggest that 1 [PF6]3 is a Class II mixed valence compound. 1 [PF6]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [FeIII‐NC‐RuIII‐CN‐FeII], which is induced by electron transfer from the central RuII to the terminal FeIII in 1 [PF6]4, which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.  相似文献   

19.
Zn11Rh18B8 and Zn10MRh18B8 with M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Si, Ge and Sn are obtained by reaction of the elemental components in sealed tantalum tubes at 1500 K. They crystallize tetragonally with Z = 2 in the spacegroup P4/mbm with lattice constants a = 1771.2(2) pm, c = 286.40(4) pm for Zn11Rh18B8 and in the range a = 1767.65(9) pm, c = 285.96(3) pm (Zn10NiRh18B8) to a = 1774.04(9) pm, c = 286.79(2) pm (Zn10SnRh18B8) for the quaternary compounds. According to powder photographs all compounds are isotypic. Struture determinations based on single crystal X-ray data were performed with Zn11Rh18B8, Zn10FeRh18B8 and Zn10NiRh18B8. The structure of Zn11Rh18B8 is related to the Ti3Co5B2 type. Along the short axis planar nets of rhodium atoms composed of triangles, squares, pentagons and elongated hexagons alternate with layers containing the boron and zinc atoms. The rhodium atoms form trigonal prisms centered by boron atoms, two kinds of tetragonal and pentagonal prisms centered by zinc atoms and elongated hexagonal prisms containing pairs of zinc atoms. In the quaternary compounds Zn10MRh18B8 the zinc atoms in one sort of tetragonal prisms are replaced by M atoms.  相似文献   

20.
Complexation of FeII and FeIII with azaheterocyclic ligands L (L = phen or bipy) were studied in the presence and in the absence of boron cluster anions [BnHn]2– (n = 10, 12). The reactions were carried out in air at room temperature in organic solvents and/or water. In all the solvents used, well known [FeL3]An (An = 2Cl or SO42–) ferrous complexes were formed from FeII salts. Composition of ferric complexes with L ligands depends on the nature of solvent: either dinuclear oxo‐iron(III) chlorides [L2ClFeIII–O–FeIIIL2Cl]Cl2 or ferric ferrates(III) [FeIIIL2Cl2][FeIIICl4], or [FeIIIL2Cl2][FeIIICl4L] were isolated from FeIII salts. Introduction of the closo‐borate anions to a Fe3+(or Fe2+)/L/solv. mixture stabilizes ferrous cationic complexes [FeL3]2+ in all the solvents used: only ferrous [FeL3][BnHn] (n = 10, 12) complexes were isolated from all the reaction mixtures in the presence of boron cluster anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号