首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
运用密度泛函方法在(U) B3LYP/LanL2DZ水平上研究了Nb2Sin+ (n=1~6)团簇的几何结构和电子性质.结果发现最低能Nb2Si+团簇除了n=5,6发生了微小畸变外,其余基本保持了相应的中性Nb2Sin[(n=1~6)]团簇的结构,且除了Nb2Si+团簇外,所有的最低能结构都是自旋二重态,电子态也都为2A;由原子平均束缚能和分裂能可知,Nb2Si+团簇的热力学稳定性比相应的Nb2Sin团簇[(n=1~6)]强,说明失去一个电子增加了团簇的热力学稳定性.且Nb2Si+团簇的热力学稳定性是Nb2Si+ (n=1~6)团簇中最强的.从绝热电离势(ALP)和垂直电离势(VIP)的结果发现,由于VIP与AIP差值很小,说明Nb2Si+团簇和Nb2Sin团簇[(n=1~6)]结构的构型相同.Nb2Si团簇的AIP值具有最小值6.623eV,表明在实验上很容易得到它们的阳离子形式且在质谱中可观测到较高的峰值.对HOMO-LUMO能隙的研究表明与相应的Nb2Sin(n=1~6)团簇相比,Nb2Sin+ (n=1~6)团簇的HOMO-LUMO能级除了n=2,6外普遍增大,说明Nb2Si+团簇的化学稳定性强于Nb2Sin团簇[(n=1~6)],并且除了Nb2Si[团簇外都是半导体性的.由Mulliken电荷布局得出团簇的总磁矩和原子局域磁矩,表明Nb2Si+团簇的总磁矩最大,为3.0μB,呈现为铁磁质.硅原子则在不同的团簇中表现为顺磁性或抗磁性.  相似文献   

2.
运用密度泛函方法在在(U)B3LYP/LanL2DZ水平上研究了Nb2Sin+(n=1~6)团簇的几何结构和电子性质.结果发现最低能Nb2Sin+团簇除了n=5,6发生了微小畸变外,其余基本保持了相应的中性Nb2Sin[(n=1~6)]团簇的结构.且除了Nb2Si+团簇外,所有的最低能结构都是自旋二重态,电子态也都为2A;由原子平均束缚能和分裂能可知,Nb2Sin+团簇的热力学稳定性比相应的Nb2Sin团簇[(n=1~6)]强,说明失去一个电子增加了团簇的热力学稳定性.且Nb2Si3+团簇的热力学稳定性是Nb2Sin+(n=1~6)团簇中最强的.从绝热电离势(AIP)和垂直电离势(VIP)的结果发现,由于VIP与AIP差值很小,说明 Nb2Sin+团簇和Nb2Sin 团簇[(n=1~6)]结构的构型相同.Nb2Si团簇的AIP值具有最小值6.623eV,表明在实验上很容易得到它们的阳离子形式且在质谱中可观测到较高的峰值.对HOMO-LUMO能隙的研究表明与相应的Nb2Sin(n=1~6)团簇相比,Nb2Sin+(n=1~6)团簇的HOMO-LUMO能级除了n=2,6外普遍增大,说明Nb2Sin+团簇的化学稳定性强于Nb2Sin团簇[(n=1~6)],并且除了Nb2Si3+团簇外都是半导体性的.由Mulliken电荷布局得出团簇的总磁矩和原子局域磁矩,表明Nb2Si+团簇的总磁矩最大,为3.0μB,呈现为铁磁质.硅原子则在不同的团簇中表现为顺磁性或抗磁性.  相似文献   

3.
运用密度泛函方法在(U)B3LYP/LanL2DZ水平上研究了两个铌原子掺杂硅团簇的几何和电子结构。计算结果表明,Nb2Sin(n=1~6)团簇相对最稳定的结构基本上都保持了Sin+2团簇基态构型的框架,且除了Nb2Si2团簇外,所有的基态都是单重态构型.Nb2Si3的分裂能最大,成为Nb2Sin( n=1~6)团簇中热力学稳定性最强的. 在Nb2Si团簇和Nb2Si2 团簇中电子是从Nb原子向Si原子转移的;当n=3~6时,两个Nb原子的自然电子布局为负,说明Nb2Sin(n=3~6)团簇原子中带电子从Si原子转移到两个Nb原子,电子转移方向发生了改变,即发生了电子反转现象。  相似文献   

4.
运用密度泛函方法在(U)B3LYP/Lan L2DZ水平上对Nb_2Ge_n(n=1~4)团簇进行了系统的理论研究,得到Nb_2Ge_n(n=1~4)团簇的最低能结构的几何构型和电子性质.优化结果表明:Nb_2Ge_n(n=1~4)团簇最低能结构的自旋多重度均为单重态.团簇最低能结构的电子态与团簇的大小有关.当n为奇数时,团簇的电子态为~1A~1,n为偶数时电子态为1A.通过对计算平均束缚能和分裂能发现:Nb_2Ge_n(n=1~4)团簇中热力学稳定性最强的是Nb_2Ge_2团簇;最弱的是Nb_2Ge_4团簇.自然电荷分布的结果说明Nb_2Ge_n(n=1~4)团簇中当n=1-2时,电子转移正常,而当n=3-4时出现电荷反转现象.同时还研究了HOMOLUMO能隙、磁性和红外光谱.  相似文献   

5.
运用杂化密度泛函理论方法在(U)B3LYP/Lan L2DZ水平研究了Ru Sin(n=1~6)团簇体系的稳定结构及电子性质.结果发现:Ru Sin(n=1~6)团簇基本保持了纯硅团簇的框架.对原子平均束缚能和分裂能的计算表明,Ru Si6团簇是Ru Sin(n=1~6)团簇中热力学稳定性最强的.对自然电荷分布的研究结果发现,Ru Sin(n=2,4~6)团簇的最低能结构出现电荷反转现象.HOMO-LUMO能隙的研究结果表明掺入钌原子后团簇的化学活性增强了,且Ru Si的化学活性是Ru Sin(n=1~6)团簇最强的.通过对团簇磁矩的研究发现,Ru Si和Ru Si3团簇具有了磁性,其余团簇的总磁矩为零,且Ru Sin(n=1~6)团簇中各原子对团簇总磁矩的贡献不同.  相似文献   

6.
运用密度泛函方法在(U)B3LYP/LanL2DZ水平上研究了 (n=1~6)团簇的几何结构和电子性质.结果发现 (n=1~6)团簇只是在相应的Nb2Sin团簇的结构基础上发生了微小畸变.其中 团簇结构变化较为严重.对平均束缚能和分裂能的研究发现, 团簇的平均束缚能和分裂能均明显高于相应的Nb2Sin团簇,表明增加一个电子可以提高Nb2Sin(n=1~6)团簇的稳定性.通过对最低能构型的分裂能的研究发现, 团簇和Nb2Si3团簇分别是 和Nb2Sin(n=1~6)团簇中所有最低能构型中最稳定的.对电荷自然布局的研究发现,在 团簇中出现了电子反转.而对于Nb2Sin(n=1~6)团簇,当n=4~6时出现电子反转现象, n=1~2时电子转移符合常规. 对HOMO-LUMO能隙的研究结果表明,除了n=1,6外,其余 (n=2~5)团簇最低能结构的HOMO-LUMO 能隙均小于相应的Nb2Sin团簇,说明在这些团簇中增加一个电子增强了团簇的化学活性,但是当n=1、6时增加一个电子,该团簇的化学活性反而降低了.对于 (n=1~6)团簇来讲, 和 团簇分别成为 (n=1~6)团簇中化学稳定性最强和化学活性最强的.且 (n=1~6)团簇呈现半导体属性.对磁矩的研究结果表明, (n=1~6) 团簇的最低能结构的总磁矩均为1.00μB,两个Nb原子的局域磁矩方向,除了 团簇有一个铌原子与总磁矩相反外,其余均与总磁矩方向相同.说明各团簇中两个铌原子和硅原子对磁矩的贡献不同,方向也不完全相同.  相似文献   

7.
运用杂化密度泛函理论方法在(U)B3LYP/LanL2DZ水平研究了RuSin(n=1~6)团簇体系的稳定结构及电子性质.结果发现:RuSin(n=1~6)团簇基本保持了纯硅团簇的框架.对原子平均束缚能和分裂能的计算表明,RuSi6团簇是RuSin(n=1~6)团簇中热力学稳定性最强的.对自然电荷分布的研究结果发现,RuSin(n=2,4~6)团簇的最低能结构出现电荷反转现象. HOMO-LUMO能隙的研究结果表明掺入钌原子后团簇的化学活性增强了,且RuSi的化学活性是RuSin(n=1~6)团簇最强的。通过对团簇磁矩的研究发现,RuSi和RuSi3团簇具有了磁性,其余团簇的总磁矩为零,且RuSin(n=1~6)团簇中各原子对团簇总磁矩的贡献不同.  相似文献   

8.
采用密度泛函理论中杂化密度泛函B3LYP/6-311G(d,p)方法,对(LiH)_n(n=1~5)团簇结构进行计算,得到最稳定构型,并计算分析其与NH_3的反应机理.对各反应的中间体和过渡态进行频率分析和内禀反应坐标(IRC)计算,以验证反应的正确性.用QCISD/6-311G(d,p)方法计算各驻点的单点能,得到能量信息.结果表明:各反应所释放H_2中的两个氢原子分别来源于NH_3和(LiH)_n(n=1~5)团簇.弱化N-H键的作用有利于反应能垒的降低,是反应脱氢的关键.LiH团簇尺寸变化对反应能垒没有太大影响.  相似文献   

9.
运用密度泛函方法在(U)B3LYP/LanL2DZ水平上研究了Nb2Sin-(n=1~6)团簇的几何结构和电子性质.结果发现Nb2Sin-(n=1~6)团簇只是在相应的Nb2Sin团簇的结构基础上发生了微小畸变.其中Nb2Si-6团簇结构变化较为严重.对平均束缚能和分裂能的研究发现,Nb2Sin-(n=1~6)团簇的平均束缚能和分裂能均明显高于相应的Nb2Sin团簇,表明增加一个电子可以提高Nb2Sin(n=1~6)团簇的稳定性.通过对最低能构型的分裂能的研究发现,Nb2Si-3团簇和Nb2Si3团簇分别是Nb2Sin-和Nb2Sin(n=1~6)团簇中所有最低能构型中最稳定的.对电荷自然布局的研究发现,在Nb2Sin-(n=1~6)团簇中出现了电子反转.而对于Nb2Sin(n=1~6)团簇,当n=4~6时出现电子反转现象,n=1~2时电子转移符合常规.对HOMO-LUMO能隙的研究结果表明,除了n=1,6外,其余Nb2Sin-(n=2~5)团簇最低能结构的HOMO-LUMO能隙均小于相应的Nb2Sin团簇,说明在这些团簇中增加一个电子增强了团簇的化学活性,但是当n=1、6时增加一个电子,该团簇的化学活性反而降低了.对于Nb2Sin-(n=1~6)团簇来讲,Nb2Si-2和Nb2Si-5团簇分别成为Nb2Sin-(n=1~6)团簇中化学稳定性最强和化学活性最强的.且Nb2Sin-(n=1~6)团簇呈现半导体属性.对磁矩的研究结果表明,Nb2Sin-(n=1~6)团簇的最低能结构的总磁矩均为1.00μB,两个Nb原子的局域磁矩方向,除了Nb2Si5-团簇有一个铌原子与总磁矩相反外,其余均与总磁矩方向相同.说明各团簇中两个铌原子和硅原子对磁矩的贡献不同,方向也不完全相同.  相似文献   

10.
本工作采用LANL2DZ赝势基组、B3LYP方法对(HgSe)n(n=1~6)团簇进行了结构优化、自然键原子轨道和频率计算,得到(HgSe)n(n=1~6)团簇基态的平衡几何结构、电子状态、垂直电离势、垂直电子亲和势、偶极矩、三个基本热力学函数等相关性质,并系统分析了该团簇的几何构型、原子净电荷布局、前沿分子轨道特征.结果表明:基态稳定结构(HgSe)2为平面四边形,(HgSe)n(n=3~6)为笼状结构,且稳定顺序为(HgSe)5(HgSe)4(HgSe)6(HgSe)2HgSe(HgSe)3,极性顺序为:(HgSe)4HgSe(HgSe)3(HgSe)5(HgSe)6(HgSe)2,(HgSe)6和(HgSe)2分子空间结构的对称性较好.(HgSe)n(n=1~6)团簇各体系都有较好的电子供体及受体等活性部位,随着n增大轨道离域现象明显,利于电子的转移,导电性增强.  相似文献   

11.
本工作采用LANL2DZ赝势基组、B3LYP方法对(HgSe)n(n=1~6)团簇进行了结构优化、自然键原子轨道和频率计算,得到(HgSe)n(n=1~6)团簇基态的平衡几何结构、电子状态、垂直电离势、垂直电子亲和势、偶极矩、三个基本热力学函数等相关性质,并系统分析了该团簇的几何构型、原子的净电荷布局、前沿分子轨道特征。结果表明:基态稳定结构(HgSe)2为平面四边形,(HgSe)n(n=3~6)为笼状结构,且稳定顺序为(HgSe)5>(HgSe)4>(HgSe)6>(HgSe)2>HgSe>(HgSe)3,极性顺序为:(HgSe)4>HgSe>(HgSe)3>(HgSe)5>(HgSe)6>(HgSe)2,(HgSe)6、(HgSe)2分子空间结构的对称性较好。(HgSe)n(n=1~6)团簇各体系都有较好的电子供体及受体等活性部位,随着n增大轨道离域现象明显,利于电子的转移,导电性增强。  相似文献   

12.
利用密度泛函理论B3LYP方法, 在6-311G*基组水平上对(KN3)n(n=1~5)团簇各种可能的结构进行了几何结构优化, 预测了各团簇的最稳定结构. 并对最稳定结构的振动特性、成键特性、电荷分布和稳定性性质进行了分析研究. 结果表明, 叠氮化合物中叠氮基以直线型存在, KN3团簇最稳定结构为直线型, (KN3)n(n=2~3)团簇最稳定结构为环形结构, (KN3)n(n=4~5)团簇最稳定结构是由(KN3)2团簇最稳定结构形成的平面和空间结构. N-N 键键长在0.1156~0.1196 nm之间, N-K键键长在0.2357~0.2927 nm之间; 叠氮基中间的N原子显示正电性, 两端的N原子显示负电性, 且与K原子直接作用的N原子负电性更强, 金属K原子与N原子之间形成离子键. (KN3)n(n=1~5)团簇最稳定结构的IR光谱最强振动峰均位于2180~2230 cm-1, 振动模式为叠氮基中N-N键的反对称伸缩振动. 稳定性分析显示, (KN3)3团簇具有相对较高的动力学稳定性.  相似文献   

13.
利用密度泛函理论B3LYP方法, 在6-311G*基组水平上对(KN3)n(n=1~5)团簇各种可能的结构进行了几何结构优化, 预测了各团簇的最稳定结构. 并对最稳定结构的振动特性、成键特性、电荷分布和稳定性性质进行了分析研究. 结果表明, 叠氮化合物中叠氮基以直线型存在, KN3团簇最稳定结构为直线型, (KN3)n(n=2~3)团簇最稳定结构为环形结构, (KN3)n(n=4~5)团簇最稳定结构是由(KN3)2团簇最稳定结构形成的平面和空间结构. N-N 键键长在0.1156~0.1196 nm之间, N-K键键长在0.2357~0.2927 nm之间; 叠氮基中间的N原子显示正电性, 两端的N原子显示负电性, 且与K原子直接作用的N原子负电性更强, 金属K原子与N原子之间形成离子键. (KN3)n(n=1~5)团簇最稳定结构的IR光谱最强振动峰均位于2180~2230 cm-1, 振动模式为叠氮基中N-N键的反对称伸缩振动. 稳定性分析显示, (KN3)3团簇具有相对较高的动力学稳定性.  相似文献   

14.
应用密度泛函理论(DFT)B3LYP方法在6-311+G(d)水平上计算并分析了KBn(n=1~10)团簇的几何结构及电子性质和极化率.通过研究团簇的平均结合能、能级间隙、二阶能量差分分析了团簇的稳定性规律,研究表明:KBn(n=1~10)团簇基态多数为立体构型,能级间隙和二阶能量差分结果表明KB3 与KB9是幻数团簇.对团簇基态的极化率研究表明KB。团簇的电子结构随B原子的增加趋于紧凑,基本形成了一定的堆积方式.静态第一超极化率研究表明K战与KB4两种平面构型的团簇具有较好的非线性光学性能。  相似文献   

15.
(MgB2)n(n=1~3)团簇结构与性质的密度泛函研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的杂化密度泛函B3IJYP方法在6-31G*基组水平上对(MgB2)n(n=1~3)团簇各种可能的构型进行几何结构优化,预测各团簇的最稳定结构,并对其振动特性、成键特性、极化率和超极化率等性质进行理论研究.结果表明,团簇的几何结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子处在端位,且显正电性,Mg原子的自然电荷在 0.559e~ 0.920e之间,B原子的自然电荷在-0.724e~ 0.197e之间;团簇中通常是B-B键和B-Mg键共存,较少出现Mg-Mg键,计算得到的B-B键键长在0.153~0.182 nm之间,B-Mg键键长在0.218~0.231 nm之间.  相似文献   

16.
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对(LiN3)n(n=1~2)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性和电荷布局等性质进行了理论研究.结果表明,LiN3团簇最稳定构型为直线构型;(LiN3)n(n=1~2)团簇中N-N键长在0.1146~0.1203nm之间,N-Li键长在0.1722~0.1987nm之间;团簇中Li原子全部显正电性,越靠近Li原子的N原子负电性越强,在直线构型的N3-离子中,两端的N原子均具负电荷,而中心N原子具正电荷.  相似文献   

17.
采用密度泛函理论(DFT)方法对Nin(n=1-9)团簇的结构, 稳定性和磁性进行了详细的研究. 得到了一些以前文献中没有提到的稳定结构, 并与其它方法得到的结构进行了比较, 得到的最稳定结构与实验结果相一致. 团簇能量的二阶差分、分裂能、HOMO-LUMO能隙随团簇尺寸的演化都没有表现出明显的奇偶振荡行为, 但在n=5、7时均有较大的值, 说明相对应的团簇具有较高的稳定性、较低的化学活性. 团簇磁性的研究表明团簇的平均每原子磁矩随团簇尺寸的增加有一定振荡, 但有逐渐减小的趋势, n≥5时团簇的构型对团簇磁性的影响较小.  相似文献   

18.
采用密度泛函理论(DFT)中的杂化密度泛函B3LYP方法,在LANL2DZ基组水平上研究了AunLa (n=1-8)团簇的几何结构。计算并讨论了基态结构稳定性及电子性质。结果表明,当n=3-8时,基态结构均为三维结构且La原子趋向与更多的Au原子结合。团簇二阶能量差分,能隙和化学硬度计算结果显示除了AuLa外,具有偶数数目的团簇比奇数数目的团簇具有更好的稳定性,其中,Au3La团簇的稳定性相对较好。  相似文献   

19.
温俊青  夏涛  王俊斐 《物理学报》2014,63(2):23103-023103
采用密度泛函理论方法,在BPW91/LANL2DZ水平下详细研究了Pt n Al(n=1—8)团簇的几何结构、稳定性和电子性质.同时,分析了团簇的结构演化规律、平均结合能、二阶能量差分、能隙、磁性、Mulliken电荷和电极化率.结果表明:除Pt2Al外,所有Pt n Al(n=1—8)团簇的基态几何结构都可以用Al原子替换Pt n+1基态构型中的Pt原子得到,且Al原子位于较高的配位点上.二阶能量差分、能隙的分析结果表明,PtAl和Pt4Al团簇相对其他团簇具有较高的稳定性.Mulliken电荷分析表明,Al原子所带的电荷转移到Pt原子上,Al原子是电荷的捐赠者.磁性的分析说明,单个Al原子的加入对Pt n团簇的平均每原子磁矩随尺寸的变化趋势没有影响,但总体上降低了Pt n团簇的平均磁矩.极化率的研究表明,富Pt团簇的非线形光学效应强,容易被外场极化.  相似文献   

20.
MgmBn(m=1,2;n=1-4)团簇结构与性质的密度泛函理论研究   总被引:3,自引:0,他引:3       下载免费PDF全文
用密度泛函理论(DFT)的杂化密度泛函B3LYP方法在6-31G*基组水平上对MgmBn(m=1,2;n=1-4)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的振动特性、电离势、成键特性、极化率和超极化率等性质进行了理论研究.结果表明,团簇的最稳定结构大多是平面结构,团簇的稳定结构中通常是几个呈负电性的B原子形成一个负电中心,而其他B原子和Mg原子通常处在端位,且显正电性;团簇中通常是B-B键和B-Mg键共存,极少出现Mg-Mg键,计算得到的B-B键键长在0.153-0.182nm之间,B-Mg键键长在0.221-0.231nm之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号