共查询到20条相似文献,搜索用时 17 毫秒
1.
J. J. Berzas Nevado J. Rodríguez Flores G. Castaeda Pealvo 《Analytica chimica acta》1997,340(1-3):257-265
Two spectrophotometric methods for the determination of Ethinylestradiol (ETE) and Levonorgestrel (LEV) by using the multivariate calibration technique of partial least square (PLS) and principal component regression (PCR) are presented. In this study the PLS and PCR are successfully applied to quantify both hormones using the information contained in the absorption spectra of appropriate solutions. In order to do this, a calibration set of standard samples composed of different mixtures of both compounds has been designed. The results found by application of the PLS and PCR methods to the simultaneous determination of mixtures, containing 4–11 μg ml−1 of ETE and 2–23 μg ml−1 of LEV, are reported. Five different oral contraceptives were analyzed and the results were very similar to that obtained by a reference liquid Chromatographic method. 相似文献
2.
Multivariate calibration techniques for use in multicomponent kinetic-based determinations are reviewed. Multivariate calibration is a chemometric tool that continues to grow in popularity among analytical chemists. Multicomponent kinetic methods depend on differences in rates of reactions or processes to distinguish among the components. Kinetic profiles or a combination of kinetic profiles and spectra are commonly used. Because of their ability to process large quantities of data, multivariate calibration techniques are well suited for kinetic-based determinations. The concepts and principles of multivariate calibration are discussed first. Classical least squares regression, principal component regression, partial least squares regression and artificial neural networks are the multivariate calibration techniques considered here in detail. Recent examples of the application of these techniques to multicomponent kinetic determinations are reviewed. Both single and multiwavelength kinetic data are considered. 相似文献
3.
Parviz Shahbazikhah John H. Kalivas Erik Andries Trevor O'Loughlin 《Journal of Chemometrics》2016,30(3):109-120
With projection based calibration approaches, such as partial least squares (PLS) and principal component regression (PCR), the calibration space is spanned by respective basis vectors (latent vectors). Up to rank k basis vectors are formed where k ≤ min(m,n) with m and n denoting the number of calibration samples and measured variables. The user needs to decide how many and which respective basis vectors (tuning parameters). To avoid the second issue, basis vectors are selected top‐down starting with the first and sequentially adding until model criteria are satisfied. Ridge regression (RR) avoids the issues by using the full set of basis vectors. Another approach is to select a subset from the total available. The presented work develops a process based on the L1 vector norm to select basis vectors. Specifically, the L1 norm is used to select singular value decomposition (SVD) basis set vectors for PCR (LPCR). Because PCR, PLS, RR, and others can be expressed as linear combination of the SVD basis vectors, the focus is on selection and comparison using the SVD basis set. Results based on respective tuning parameter selections and weights applied to the SVD basis vectors for LPCR, top‐down PCR, correlation PCR (CPCR), PLS, and RR are compared for calibration and calibration updating using spectroscopic data sets. The methods are found to predict equivalently. In particular, the L1 norm produces similar results to those obtained by the well‐studied CPCR process. Thus, the new method provides a different theoretical framework than CPCR for selecting basis vectors. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
5.
Multivariate concentration determination using principal component regression with residual analysis 总被引:1,自引:0,他引:1
Richard B. Keithley R. Mark Wightman Michael L. Heien 《Trends in analytical chemistry : TRAC》2009,28(9):1127-1136
Data analysis is an essential tenet of analytical chemistry, extending the possible information obtained from the measurement of chemical phenomena. Chemometric methods have grown considerably in recent years, but their wide use is hindered because some still consider them too complicated. The purpose of this review is to describe a multivariate chemometric method, principal component regression, in a simple manner from the point of view of an analytical chemist, to demonstrate the need for proper quality-control (QC) measures in multivariate analysis and to advocate the use of residuals as a proper QC method. 相似文献
6.
Linear and non-linear calibration methods (principal component regression (PCR), partial least squares regression (PLS), and neural networks (NN)) were applied to a slightly non-linear Raman data set. Because of the large size of this data set, recently introduced linear calibration methods, specifically optimised for speed, were also used. These fast methods achieve speed improvement by using the Lanczos decomposition for the singular value decomposition steps of the calibration procedures, and for some of their variants, by optimising the models without cross-validation (CV). Linear methods could deal with the slight non-linearity present in the data by including extra components, therefore, performing comparably to NNs. The fast methods performed as well as their classical equivalents in terms of precision in prediction, but the results were obtained considerably faster. It, however, appeared that CV remains the most appropriate method for model complexity estimation. 相似文献
7.
Jun Bin Fang‐Fang Ai Nian Liu Zhi‐Min Zhang Yi‐Zeng Liang Ru‐Xin Shu Kai Yang 《Journal of Chemometrics》2013,27(12):457-465
The supervised principal components (SPC) method was proposed by Bair and Tibshirani for statistics regression problems where the number of variables greatly exceeds the number of samples. This case is extremely common in multivariate spectral analysis. The objective of this research is to apply SPC to near‐infrared and Raman spectral calibration. SPC is similar to traditional principal components analysis except that it selects the most significant part of wavelength from the high‐dimensional spectral data, which can reduce the risk of overfitting and the effect of collinearity in modeling according to a semi‐supervised strategy. In this study, four conventional regression methods, including principal component regression, partial least squares regression, ridge regression, and support vector regression, were compared with SPC. Three evaluation criteria, coefficient of determination (R2), external correlation coefficient (Q2), and root mean square error of prediction, were calculated to evaluate the performance of each algorithm on both near‐infrared and Raman datasets. The comparison results illustrated that the SPC model had a desirable ability of regression and prediction. We believe that this method might be an alternative method for multivariate spectral analysis. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
This paper describes a two step algorithm for qualitative and semiquantitative analysis in inductively coupled plasma—atomic emission spectroscopy (ICP-AES) including the preceding data acquisition. Sample and calibration spectra were recorded in 0.05 nm spectral windows centered about the most prominent lines of the 49 covered elements. In the first step of the analysis of an unknown sample spectrum it is decided which of these elements can be excluded from further operations because of the absence of their most prominent lines applying a multivariate criterion for peak detection. For the remaining elements quantitative analysis is performed via multivariate calibration taking into consideration the most prominent line of each element and possibly interfering lines of those elements which were not found absent during the first step. After the estimation of the element concentrations multivariate detection limits are used as criterion for the presence of an element. Results for six synthetic samples of increasing complexity prepared from standard solutions and three standard reference materials are given. 相似文献
9.
《Surface and interface analysis : SIA》2018,50(7):713-728
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides detailed molecular insight into the surface chemistry of a diverse range of material types. Extracting useful and specific information from the mass spectra and reducing the dimensionality of very large datasets are a challenge that has not been fully resolved. Multivariate analysis has been widely deployed to assist in the interpretation of ToF‐SIMS data. Principal component analysis is a popular approach that requires the generation of peak lists for every spectrum. Peak list sizes and the resulting data matrices are growing, complicating manual peak selection and analysis. Here we report the generation of very large ToF‐SIMS peak lists using up‐binning, the mass segmentation of spectral data in the range 0 to 300 m/z in 0.01 m/z intervals. Time‐of‐flight secondary ion mass spectrometry data acquired from a set of 4 standard polymers (polyethylene terephthalate, polytetrafluoroethylene, poly(methyl methacrylate), and low‐density polyethylene) are used to demonstrate the efficacy of this approach. The polymer types are discriminated to a moderate extent by principal component analysis but are easily skewed with saturated species or contaminants present in ToF‐SIMS data. Artificial neural networks, in the form of self‐organising maps, are introduced and provide a non‐linear approach to classifying data and focussing on similarities between samples. The classification outcome achieved is excellent for different polymer types and for spectra from a single polymer type generated by using different primary ions. This method offers great promise for the investigation of more complex systems including polymer classes and blends and mixtures of biological materials. 相似文献
10.
Compared with daily recorded process variables that can be easily obtained through the distributed control system, acquirements of key quality variables are much more difficult. As a result, for soft sensor development, we may only have a small number of output data samples and have much more input data samples. In this case, it is important to incorporate more input data samples to improve the modeling performance of the soft sensor. On the basis of the semisupervised modeling method, this paper aims to extend the linear semisupervised soft sensor to the nonlinear one, with incorporation of the kernel learning algorithm. Under the probabilistic modeling framework, a mixture form of the nonlinear semisupervised soft sensor is developed in the present work. To evaluate the performance of the developed nonlinear semisupervised soft sensor, an industrial case study is provided. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
11.
Near-infrared spectroscopy (NIR) models built on a particular instrument are often invalid on other instruments due to spectral inconsistencies between the instruments. In the present work, global and robust NIR calibration models were constructed by partial least square (PLS) regression based on hybrid calibration sets, which are composed of both primary and secondary spectra. Three datasets were used as case studies. The first consisted of 72 radix scutellaria samples measured on two NIR spectrometers with known baicalin content. The second was composed of 80 corn samples measured on two instruments with known moisture, oil, and protein concentrations. The third dataset included 279 primary samples of tobacco with known nicotine content and 78 secondary samples of tobacco with known nicotine concentrations. The effect of the number of secondary spectra in the hybrid calibration sets and the methods for selecting secondary spectra on the PLS model performance were investigated by comparing the results obtained from different calibration sets. This study shows that the global and robust calibration models accurately predicted both primary and secondary samples as long as the ratios of the number of primary spectra to the number of secondary spectra were less than 22. The models performance was not influenced by the selection method of the secondary spectra. The hybrid calibration sets included the primary spectral information and also the secondary spectra; information, rendering the constructed global and robust models applicable to both primary and secondary instruments. 相似文献
12.
13.
To date, few efforts have been made to take simultaneous advantage of the local nature of spectral data in both the time and frequency domains in a single regression model. We describe here the use of a novel chemometrics algorithm using the wavelet transform. We call the algorithm dual-domain regression, as the regression step defines a weighted model in the time-domain based on the contributions of parallel, frequency-domain models made from wavelet coefficients reflecting different scales. In principle, any regression method can be used, and implementation of the algorithm using partial least squares regression and principal component regression are reported here. The performance of the models produced from the algorithm is generally superior to that of regular partial least squares (PLS) or principal component regression (PCR) models applied to data restricted to a single domain. Dual-domain PLS and PCR algorithms are applied to near infrared (NIR) spectral datasets of Cargill corn samples and sets of spectra collected on batch chemical reactions run in different reactors to illustrate the improved robustness of the modeling. 相似文献
14.
Near-infrared spectroscopy and multivariate calibration for the quantitative determination of certain properties in the petrochemical industry 总被引:3,自引:0,他引:3
Near-infrared (NIR) spectroscopy in conjunction with chemometric techniques allows on-line monitoring in real time, which can be of considerable use in industry. If it is to be correctly used in industrial applications, generally some basic considerations need to be taken into account, although this does not always apply. This study discusses some of the considerations that would help evaluate the possibility of applying multivariate calibration in combination with NIR to properties of industrial interest. Examples of these considerations are whether there is a relation between the NIR spectrum and the property of interest, what the calibration constraints are and how a sample-specific error of prediction can be quantified. Various strategies for maintaining a multivariate model after it has been installed are also presented and discussed. 相似文献
15.
Yunfei Xie Yan Song Yong Zhang Bing Zhao 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2010,75(5):1535-1539
Pefloxacin mesylate, a broad-spectrum antibacterial fluoroquinolone, has been widely used in clinical practice. Therefore, it is very important to detect the concentration of Pefloxacin mesylate. In this research, the near-infrared spectroscopy (NIRS) has been applied to quantitatively analyze on 108 injection samples, which was divided into a calibration set containing 89 samples and a prediction set containing 19 samples randomly. In order to get a satisfying result, partial least square (PLS) regression and principal components regression (PCR) have been utilized to establish quantitative models. Also, the process of establishing the models, parameters of the models, and prediction results were discussed in detail. In the PLS regression, the values of the coefficient of determination (R2) and root mean square error of cross-validation (RMSECV) of PLS regression are 0.9263 and 0.00119, respectively. For comparison, though applying PCR method to get the values of R2 and RMSECV we obtained are 0.9685 and 0.00108, respectively. And the values of the standard error of prediction set (SEP) of PLS and PCR models are 0.001480 and 0.001140. The result of the prediction set suggests that these two quantitative analysis models have excellent generalization ability and prediction precision. However, for this PFLX injection samples, the PCR quantitative analysis model achieved more accurate results than the PLS model. The experimental results showed that NIRS together with PCR method provide rapid and accurate quantitative analysis of PFLX injection samples. Moreover, this study supplied technical support for the further analysis of other injection samples in pharmaceuticals. 相似文献
16.
17.
S.Kamaledin SetarehdanJohn J Soraghan David LittlejohnDaran A Sadler 《Analytica chimica acta》2002,452(1):35-45
A novel strategy for building and maintaining calibration models has been developed for use when the future boundaries of the sample set are unknown or likely to change. Such a strategy could have an impact on the economics and time required to obtain and maintain a calibration model for routine analysis. The strategy is based on both principal component analysis (PCA) and partial least squares (PLS) multivariate techniques. The principal action of the strategy is to define how “similar” a new sample is to the samples currently defining the calibration dataset. This step is performed by residuals analysis, following PCA. If the new sample is considered to have a spectrum “similar” to previously available spectra, then the model is assumed able to predict the analyte concentration. Conversely, if the new sample is considered “dissimilar”, then there is new information in this sample, which is unknown to the calibration model and the new sample is added automatically to the calibration set in order to improve the model. The strategy has been applied to a real industrial dataset provided by BP Amoco Chemicals. The data consists of spectra of 102 sequential samples of a raw material. The strategy produced an accurate calibration model for both target components starting with only the first four samples, and required a further 17 reference measurements to maintain the model for the whole sampling sequence, which was over a 1-year period. 相似文献
18.
Simulation of aerated lagoon using artificial neural networks and multivariate regression techniques
Karla Patricia Oliveira-Esquerre Aline C. da Costa Roy Edward Bruns Milton Mori 《Applied biochemistry and biotechnology》2003,106(1-3):437-449
The aim of this study was to develop an empirical model that provides accurate predictions of the biochemical oxygen demand
of the output stream from the aerated lagoon at International Paper of Brazil, one of the major pulp and paper plants in Brazil.
Predictive models were calculated from functional link neural networks (FLNNs), multiple linear regression, principal components
regression, and partial least-squares regression (PLSR). Improvement in FLNN modeling capability was observed when the data
were preprocessed using the PLSR technique. PLSR also proved to be a powerful linear regression technique for this problem,
which presents operational data limitations. 相似文献
19.
Well‐established, linear multivariate calibration methods such as multivariate least‐squares regression (MLR), principal component regression (PCR), or partial least squares (PLS) have two limitations: (i) measured data must be linearly related to the response variables and (ii) predictor variables xn = 1, …, N cannot be coupled to each other. For evaluation of nonlinear data, however, these restrictions need to be overcome and thus polynomial multivariate least‐squares regression (PMLR or “response surfaces”) has been introduced here. PMLR is based on multivariate least squares but incorporates all combinations of predictor variables up to a user‐selected polynomial order (e.g., including u or v = 0). Because of the inclusion of such coupled terms and their powers, PMLR models are better adapted to model nonlinear data and can help to enhance the prediction step's accuracy and precision. PMLR has been based on MLR because it facilitates—unlike PCR or PLS—a physical and chemical interpretation of the predictors. Hence, the origins and the relevance of nonlinear and/or coupled predictors can be investigated. The details of the PMLR algorithm and its implementation are presented along with a method for model optimization utilizing gradients of response surfaces. Newly developed PMLR models up to quintic order have been applied to predict a chromatograph's peak resolution as a function of six‐instrument parameters. It has been demonstrated that PMLR is better capable than MLR and PCR to describe these nonlinear and coupled instrument parameters. In addition, the novel software tool has been utilized for model optimization to determine instrument parameters, which result in the best chromatographic resolution. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
20.
Analysis of amino acids in complex samples by using voltammetry and multivariate calibration methods
A voltammetric method is proposed for the simultaneous determination of tryptophan, cysteine, and tyrosine using multivariate calibration techniques. Various electrodes and voltammetric techniques were explored to ascertain the optimum measurement strategy. Among them, differential pulse voltammetry (DPV) with a Pt electrode was selected as analytical technique since it provided a suitable compromise between sensitivity and reproducibility while allowing the oxidation peaks of the three compounds to be reasonably discriminated. The sensitivity of DPV with Pt electrode for Trp standards was 8.4×10−2 A l mol−1, the repeatability 3.7% and the detection limit below 10−7 M. The lack of full selectivity of the voltammetric data was overcome using multivariate calibration methods on the basis of the differences in the voltammetric waves of each compound. The accuracy of predictions was evaluated preliminarily from the analysis of three-component synthetic mixtures. Subsequently, this method was applied to the analysis of oxidizable amino acids in feed samples. Results obtained were in good concordance with those given by the standard method using an amino acid analyzer. 相似文献