首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Anthropogenic emissions of carbon dioxide (CO2) into the atmosphere have had a significant impact on the Earth's carbon cycle. As part of the global effort to reduce climate change, the geological storage of CO2 has been accepted as a method that may provide up to 25 % of the total reduction of emissions, although this figure is still subject to change. In Germany and worldwide, geological storage capacities are expected to be sufficient for several decades. Carbon dioxide can be captured from sources such as large‐scale industrial (energy, steel, cement or chemical) facilities and transported to long‐term storage sites in deep saltwater‐bearing aquifers. Above the porous sandstone reservoirs in which the CO2 is to be stored, an impermeable cap rock is required to provide a barrier for the upward‐migrating gas. In time, a significant quantity of the CO2 can be retained within the reservoir pore space by capillary forces, dissolved in water to form carbonic acid, or deposited as carbonate minerals. The storage site must be free of potential leakage pathways. To this end, extensive monitoring programs need to be carried out. The Ketzin pilot site, an example of such a program, has shown CO2 storage on a research scale to be safe and reliable.  相似文献   

2.
Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.  相似文献   

3.
Electrochemical reduction of carbon dioxide (CO2) into value‐added chemicals is a promising strategy to reduce CO2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO2 reduction (CO2R) is the low solubility of CO2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte‐free electrocatalytic CO2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm?2, despite the decrease in CO2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L?1 is obtained as a one‐path product at 343 K with high PCD (51.7 mA cm?2) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V.  相似文献   

4.
For hundreds of millions of years, nature uses carbon dioxide in photosynthesis as a vital building block of life. The compound is also an essential part of the carbon cycle and is co‐responsible for the transport of carbon between Earth's spheres. However, over the last years CO2 has been closely associated with global warming since the immense emissions from mainly the burning of fossil resources has led to a vast increase in atmospheric CO2‐levels. Therefore, not only a reduction of emissions on a global scale is crucial but also a trend towards renewable resources is clearly visible and necessary due to depleting fossil resources. In this context, the use of CO2 as an abundant resource in the chemical industry can contribute its share.  相似文献   

5.
The activation of carbon dioxide by transition metals is widely recognized as a key step for utilizing this greenhouse gas as a renewable feedstock for the sustainable production of fine chemicals. However, the dynamics of CO2 binding and unbinding to and from the ligand sphere of a metal have never been observed in the time domain. The ferrioxalate anion is used in aqueous solution as a unique model system for these dynamics and femtosecond UV‐pump mid‐infrared‐probe spectroscopy is applied to explore its photoinduced primary processes in a time‐resolved fashion. Following optical excitation, a neutral CO2 molecule is expelled from the complex within about 500 fs to generate a highly intriguing pentacoordinate ferrous dioxalate that carries a bent carbon dioxide radical anion ligand, that is, a reductively activated form of CO2, which is end‐on‐coordinated to the metal center by one of its two oxygen atoms.  相似文献   

6.
The activation of carbon dioxide by transition metals is widely recognized as a key step for utilizing this greenhouse gas as a renewable feedstock for the sustainable production of fine chemicals. However, the dynamics of CO2 binding and unbinding to and from the ligand sphere of a metal have never been observed in the time domain. The ferrioxalate anion is used in aqueous solution as a unique model system for these dynamics and femtosecond UV‐pump mid‐infrared‐probe spectroscopy is applied to explore its photoinduced primary processes in a time‐resolved fashion. Following optical excitation, a neutral CO2 molecule is expelled from the complex within about 500 fs to generate a highly intriguing pentacoordinate ferrous dioxalate that carries a bent carbon dioxide radical anion ligand, that is, a reductively activated form of CO2, which is end‐on‐coordinated to the metal center by one of its two oxygen atoms.  相似文献   

7.
The dinuclear zinc complex reported by us is to date the most active zinc catalyst for the co‐polymerization of cyclohexene oxide (CHO) and carbon dioxide. However, co‐polymerization experiments with propylene oxide (PO) and CO2 revealed surprisingly low conversions. Within this work, we focused on clarification of this behavior through experimental results and quantum chemical studies. The combination of both results indicated the formation of an energetically highly stable intermediate in the presence of propylene oxide and carbon dioxide. A similar species in the case of cyclohexene oxide/CO2 co‐polymerization was not stable enough to deactivate the catalyst due to steric repulsion.  相似文献   

8.
Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO2 to implement efficient separations, gas separation membranes containing CO2‐philic and non‐CO2‐philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO2‐philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non‐CO2‐philic nanodomains, rendering low‐friction diffusion. Owing to the orderly stacking of nanochannels through cross‐linking and the heterogeneous nanodomains with moderate CO2 affinity, a GO‐PEGDA500 membrane exhibits a high CO2 permeance of 175.5 GPU and a CO2/CH4 selectivity of 69.5, which is the highest performance reported for dry‐state GO‐stacking membranes.  相似文献   

9.
The electrochemical reduction of carbon dioxide (CO2) to value‐added products obtains great attention and investigation worldwide in recent years. The commercialization of this green process relies on the progress of relating high‐performance electrocatalysts and their feasibility with proper reactor design. The microbial electrosynthesis (MES) is an alternative route to reduce CO2 with electroactive bio‐film electrode as catalyst. This review presents the research status and development of cathode catalysts, particularly focusing on the active sites and development tendency, for highly efficient electrochemical reduction CO2 from personal viewpoint. Some of our results are also presented to exhibit contributions. MES shows a similar process to the typical electrochemical reduction of CO2. Their combination is an important trend, and the future research in this field is full of challenges and opportunities.  相似文献   

10.
Designing effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) is an appealing approach to tackling the challenges posed by rising CO2 levels and realizing a closed carbon cycle. However, fundamental understanding of the complicated CO2RR mechanism in CO2 electrocatalysis is still lacking because model systems are limited. We have designed a model nickel single‐atom catalyst (Ni SAC) with a uniform structure and well‐defined Ni‐N4 moiety on a conductive carbon support with which to explore the electrochemical CO2RR. Operando X‐ray absorption near‐edge structure spectroscopy, Raman spectroscopy, and near‐ambient X‐ray photoelectron spectroscopy, revealed that Ni+ in the Ni SAC was highly active for CO2 activation, and functioned as an authentic catalytically active site for the CO2RR. Furthermore, through combination with a kinetics study, the rate‐determining step of the CO2RR was determined to be *CO2?+H+→*COOH. This study tackles the four challenges faced by the CO2RR; namely, activity, selectivity, stability, and dynamics.  相似文献   

11.
(1) Background: The anthropogenically induced rise in atmospheric carbon dioxide (CO2) and associated climate change are considered a potential threat to human nutrition. Indeed, an elevated CO2 concentration was associated with significant alterations in macronutrient and micronutrient content in various dietary crops. (2) Method: In order to explore the impact of elevated CO2 on the nutritional-health properties of tomato, we used the dwarf tomato variety Micro-Tom plant model. Micro-Toms were grown in culture chambers under 400 ppm (ambient) or 900 ppm (elevated) carbon dioxide. Macronutrients, carotenoids, and mineral contents were analyzed. Biological anti-oxidant and anti-inflammatory bioactivities were assessed in vitro on activated macrophages. (3) Results: Micro-Tom exposure to 900 ppm carbon dioxide was associated with an increased carbohydrate content whereas protein, minerals, and total carotenoids content were decreased. These modifications of composition were associated with an altered bioactivity profile. Indeed, antioxidant anti-inflammatory potential were altered by 900 ppm CO2 exposure. (4) Conclusions: Taken together, our results suggest that (i) the Micro-Tom is a laboratory model of interest to study elevated CO2 effects on crops and (ii) exposure to 900 ppm CO2 led to the decrease of nutritional potential and an increase of health beneficial properties of tomatoes for human health.  相似文献   

12.
Limiting anthropogenic carbon dioxide emissions constitutes a major issue faced by scientists today. Herein we report an efficient way of controlled capture and release of carbon dioxide using nature inspired, cheap, abundant and non‐toxic, industrial pigment namely, quinacridone. An electrochemically reduced electrode consisting of a quinacridone thin film (ca. 100 nm thick)on an ITO support forms a quinacridone carbonate salt. The captured CO2 can be released by electrochemical oxidation. The amount of captured CO2 was quantified by FT‐IR. The uptake value for electrochemical release process was 4.61 mmol g?1. This value is among the highest reported uptake efficiencies for electrochemical CO2 capture. For comparison, the state‐of‐the‐art aqueous amine industrial capture process has an uptake efficiency of ca. 8 mmol g?1.  相似文献   

13.
With impressive progress in carbon capture and renewable energy, carbon dioxide (CO2) conversion into useful chemicals has become a potential tool against climate change. Electrochemical CO2 conversion into C2 products (ethylene and ethanol) is an especially economically promising approach and an active research area. Nonetheless, catalyst layer design for CO2 conversion is challenging because of the complex CO2-to-C2 reaction pathways. In this review, we highlight key ideas in catalyst layer design for CO2 conversion to C2 in the past few years. We identify three fundamental principles to control catalyst selectivity—local CO2 and CO concentration, local pH, and intermediate–catalyst interaction. To achieve these goals, we introduce design strategies for both catalytic materials and overall catalyst layer morphology.  相似文献   

14.
Transition structures and related minima on the reactive energy hypersurfaces for the hydration of carbon dioxide in the presence of a bare zinc ion and with the cation liganded with three ammonia molecules are determined in the RHF MO SCF framework at a relatively high level of basis-set representation. For the sake of comparison, the standard intramolecular proton transfer model in absence of zinc is revisited and the corresponding transition structure (TS) located. In the coordination sphere of zinc, the standard mechanism of hydration in vacuo is modified: a nucleophilic attack of water onto zinc-activated carbon dioxide. The reactive path goes via TS signaling synchronous movements in the coordination sphere of zinc: Water goes away from and carbon dioxide toward the metal. For the model systems [ZnOH2CO2]2+, this TS connects with a valley having a geminal carbonic acid (gCA) as product; the carbon–oxygen interaction of the in vacuo complex H2O···CO2 is transformed into a covalent bond by its binding to zinc: H2O—CO2-Zn is a minimum on this energy hypersurface. The standard path for intramolecular proton transfer, namely, H2O—CO2—Zn changing into (HO)2—CO—Zn, is not catalyzed by the metal. For the ammonia-ligand model system, the carbon dioxide hydration follows the same pathway as in the bare-zinc case. A possible irreversible mechanism of carbon dioxide hydration catalyzed by carbonic anhydrases at pH lower than 6 can be suggested based on the present study; here, a central role is played by an intermolecular deprotonation of gCA by water found at the active-site cleft around the metal center. This zinc–water mechanism is extrapolated to include a general acid catalysis of bicarbonate/carbon dioxide interconversion in water. Results obtained with a hydronium ion replacing zinc and an ancillary water acting as a proton acceptor for the gCA strongly suggest that, in water at pHs lower than 7, direct deprotonation of gCA offers a low-activation channel to produce carbonic acid; in the reverse direction, protonation of the hydroxyl oxygen in bicarbonate leading to gCA offers a reasonable answer to the instability of this anion in solution at low pH. This picture agrees with the one reported by Paneth and O'Leary. [J. Am. Chem. Soc. 107, 7381 (1985)] based on experimental kinetic information.  相似文献   

15.
The solvation of carbon dioxide in sea water plays an important role in the carbon circle and the world climate. The salting-out/salting-in mechanism of CO2 in electrolyte solutions still remains elusive at molecule level. The ability of ion salting-out/salting-in CO2 in electrolyte solution follows Hofmeister Series and the change of water mobility induced by salts can be predicted by the viscosity B-coefficients. In this work, the chemical potential of carbon dioxide and the dynamic properties of water in aqueous NaCl, KF and NaClO4 solutions are calculated and analyzed. According to the viscosity B-coefficients, NaClO4 (0.012) should salt out the carbon dioxide relative to in pure water, but the opposite effect is observed for it. Our simulation results suggest that the salting-in effect of NaClO4 is due to the strongly direct anion-CO2 interaction. The inconsistency between Hofmeister Series and the viscosity B-coefficient suggests that it is not always right to indicate whether a salt belongs to salting-in or salting-out just from these properties of the salt solution in the absence of solute.  相似文献   

16.
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper‐derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)‐induced bi‐phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high‐carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high‐carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi‐carbon fuels, including n‐propanol and n‐butane C3–C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface.  相似文献   

17.
《中国化学》2018,36(6):545-554
Carbon dioxide is a ubiquitous and inexpensive one‐carbon source for chemical synthesis, and the efficient incorporation of CO2 into organic molecules is of widespread research interest both for economic and ecological reasons. The methodologies to employ carbon dioxide as a single‐carbon unit to construct molecules relevant for agrochemical and pharmaceutical research include many elegant approaches, including asymmetric transformations. Even though remarkable achievements have been made in the field of light‐driven catalysis, especially photoredox catalysis, homogeneous light‐driven catalytic carboxylation by employing CO2 as the key reagent has only become a subject of increasing attention in recent years. Therefore, this concise review will discuss the latest advances in this research area.  相似文献   

18.
The chemoselectivity of the palladium‐catalyzed carbonylation of amines was affected by the addition of MeOH in supercritical carbon dioxide. The results show different selectivity in supercritical carbon dioxide CO2(sc) from that in alcohol. Methyl carbamate and its derivatives were obtained in high yields in CO2(sc).  相似文献   

19.
Electrochemical reduction of carbon dioxide (CO2) driven by renewable electricity to give chemicals and fuels is considered an ideal approach that can alleviate both carbon emission and energy tension stress. High‐value chemicals such as oxygenates can be effectively produced from the electroreduction of CO2, and this is highly attractive to promote the economy and applicability of CO2 utilization. This review focuses on recent advancements in the electrochemical reduction of CO2 to formic acid, methanol, ethanol, acetic acid, and other oxygenates. The principles of the process, influencing factors, and typical catalysts are summarized. On the basis of the aforementioned discussions, we present future prospects for further development of the electroreduction of CO2 to oxygenates.  相似文献   

20.
Photoelectrochemical (PEC) reduction of carbon dioxide (CO2) is a potential method for production of fuels and chemicals from a C1 feedstock accumulated in the atmosphere. However, the low solubility of CO2 in water, and complicated processes associated with capture and conversion, render CO2 conversion inefficient. A new concept is proposed in which a PEC system is used to capture and convert CO2 into formic acid. The process is assisted by an ionic liquid (1‐aminopropyl‐3‐methylimidazolium bromide) aqueous solution, which functions as an absorbent and electrolyte at ambient temperature and pressure. Within this PEC reduction strategy, the ionic liquid plays a critical role in promoting the conversion of CO2 to formic acid and suppressing the reduction of H2O to H2. At an applied voltage of 1.7 V, the Faradaic efficiency for formic acid production is as high as 94.1 % and the electro‐to‐chemical efficiency is 86.2 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号