首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work a mixed finite element based on a least-squares formulation is proposed. In detail, the provided constitutive relation is based on a hyperelastic free energy including terms describing a transversely isotropic material behavior. Basis for the element formulation is a weak form resulting from a least-squares method, see e.g. [1]. The L2-norm minimization of the residuals of the given first-order system of differential equations leads to a functional depending on displacements and stresses. The interpolation of the unknowns is executed using different approximation spaces for the stresses (Wq (div, Ω)) and the displacements (W1,p(Ω)), under consideration of suitable p and q. For the approximation of the stresses vector-valued shape functions of Raviart-Thomas type, related to the edges of the respective triangular element, are applied. Standard interpolation polynomials are used for the continuous approximation of the displacements. The performance of the proposed formulation will be investigated considering a numerical example. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This contribution deals with the solution of geometrically nonlinear elastic problems solved by the least-squares mixed finite element method (LSFEM). The degrees of freedom (displacements and stresses) will be approximated using suitable spaces, namely W1,p with p > 4 and H(div,Ω). In order to define the stress response of the material, different hyperelastic free energy functions will be presented. The residual forms ℛI of the balance of momentum and the constitutive equation build a system of differential equations of first order. Choosing suitable weighting operators and applying L2-norms lead to a least-squares functional ℱ( P,u ). The interpolation of the unknowns is accomplished using a standard polynomial interpolation for the displacements and vector-valued Raviart-Thomas functions for the approximation of the stresses. The formulations presented will be compared considering a uni-axial spatial tension test. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The main goal of the present work is the comparison of the performance of a least-squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least-squares functional, compare e.g. [1]. As suitable functions for standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space vector-valued Raviart-Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two-dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper we are concerned with a weighted least-squares finite element method for approximating the solution of boundary value problems for 2-D viscous incompressible flows. We consider the generalized Stokes equations with velocity boundary conditions. Introducing the auxiliary variables (stresses) of the velocity gradients and combining the divergence free condition with some compatibility conditions, we can recast the original second-order problem as a Petrovski-type first-order elliptic system (called velocity–stress–pressure formulation) in six equations and six unknowns together with Riemann–Hilbert-type boundary conditions. A weighted least-squares finite element method is proposed for solving this extended first-order problem. The finite element approximations are defined to be the minimizers of a weighted least-squares functional over the finite element subspaces of the H1 product space. With many advantageous features, the analysis also shows that, under suitable assumptions, the method achieves optimal order of convergence both in the L2-norm and in the H1-norm. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

5.
In the present work, a mixed finite element based on a modified least-squares formulation is proposed. Here, we consider the time-dependent equations for quasi-incompressible elastodynamics under small strain assumptions. The main goal is to obtain an accurate approximation of both displacements and stresses in particular for the lowest-order element. Basis for the element formulation is a weak form resulting from a least-squares method. The L2-norm minimization of the time-discretized residuals of the given first-order system leads to a functional depending on approximations for displacements and stresses. By introducing a time-independent displacement test function, a weak form is derived. A numerical example concerning quasi-incompressible elasticity shows the performance of the approach for the lowest-order element RT0P1as. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The purpose of this work is the application of the least-squares finite element method to an elastodynamic, quasi-incompressible problem under small strain assumptions. Therefore a mixed finite element based on a weighted least-squares formulation is developed. The L2-norm minimization of the time-discretized residuals of the given first-order system of partial differential equations leads to a functional depending on displacements and stresses. In the numerical example the proposed mixed element is compared to an alternative approach, which is based on a least-squares mixed finite element with improved momentum balance, see [1]. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A new first-order system formulation for the linear elasticity problem in displacement-stress form is proposed. The formulation is derived by introducing additional variables of derivatives of the displacements, whose combinations represent the usual stresses. Standard and weighted least-squares finite element methods are then applied to this extended system. These methods offer certain advantages such as that they need not satisfy the inf-sup condition which is required in the mixed finite element formulation, that a single continuous piecewise polynomial space can be used for the approximation of all the unknowns, that the resulting algebraic systems are symmetric and positive definite, and that accurate approximations of the displacements and the stresses can be obtained simultaneously. With displacement boundary conditions, it is shown that both methods achieve optimal rates of convergence in the H1-norm and in the L2-norm for all the unknowns. Numerical experiments with various Poisson ratios are given to demonstrate the theoretical error estimates.  相似文献   

8.
Alexander Schwarz  Jörg Schröder 《PAMM》2007,7(1):4040043-4040044
The objective of this work is to discuss a least-squares finite element method with applications to physically nonlinear and anisotropic constitutive equations at small strains. The L2-norm minimization of the residuals of the given first order system of differential equations leads to a functional, which is a two field formulation in the displacements and the stresses, see e.g. Cai & Starke [1]. These functionals provide the foundation for the formulations of the related least-squares mixed finite elements. A main focus of the presentation lies on the extension of plane elasticity to anisotropic or nonlinear material behavior. In this context transversely isotropic elasticity and viscoplasticity is considered. Finally a numerical example is presented. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
This paper is mainly devoted to a comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier–Stokes equations with velocity boundary condition. Introducing vorticity as an additional unknown variable, we recast the Navier–Stokes problem into a first-order quasilinear velocity–vorticity–pressure system. Two Picard-type iterative least-squares finite element schemes are proposed to approximate the solution to the nonlinear first-order problem. In each iteration, we adopt the usual L 2 least-squares scheme or a weighted L 2 least-squares scheme to solve the corresponding Oseen problem and provide error estimates. We concentrate on two-dimensional model problems using continuous piecewise polynomial finite elements on uniform meshes for both iterative least-squares schemes. Numerical evidences show that the iterative L 2 least-squares scheme is somewhat suitable for low Reynolds number flow problems, whereas for flows with relatively higher Reynolds numbers the iterative weighted L 2 least-squares scheme seems to be better than the iterative L 2 least-squares scheme. Numerical simulations of the two-dimensional driven cavity flow are presented to demonstrate the effectiveness of the iterative least-squares finite element approach.  相似文献   

10.
Summary We consider some equilibrium finite element methods for two-dimensional elasticity problems. The stresses and the displacements are approximated by using piecewise linear functions. We establishL 2-estimates of orderO(h 2) for both stresses and displacements.  相似文献   

11.
In this paper, the p-version finite element method and its fictitious domain extension, the finite cell method, are extended to the finite strain J2 plasticity. High-order shape functions are used for the finite element approximation of volume-preserving plastic dominated deformations. The accuracy and efficiency of p-version elements and cells in the finite plastic strain range are evaluated by the computation of two benchmark problems. It is shown that they provide locking free behavior and simplified meshing. These results are verified in comparison with the results of h-version elements in F-bar formulation. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
The objective of this work is to discuss a least squares finite element method within plane elasticity problems. The L 2-norm minimization of the residuals of the given first order system of differential equations leads to a functional, which is a two field formulation in the displacements and the stresses. The governing equations for the considered least squares mixed finite element are derived. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We consider finite element methods applied to a class of Sobolev equations inR d(d ≥ 1). Global strong superconvergence, which only requires that partitions are quais-uniform, is investigated for the error between the approximate solution and the Ritz-Sobolev projection of the exact solution. Two order superconvergence results are demonstrated inW 1,p (Ω) andL p(Ω) for 2 ≤p < ∞.  相似文献   

14.
A finite volume method based on stabilized finite element for the two‐dimensional nonstationary Navier–Stokes equations is investigated in this work. As in stabilized finite element method, macroelement condition is introduced for constructing the local stabilized formulation of the nonstationary Navier–Stokes equations. Moreover, for P1 ? P0 element, the H1 error estimate of optimal order for finite volume solution (uh,ph) is analyzed. And, a uniform H1 error estimate of optimal order for finite volume solution (uh, ph) is also obtained if the uniqueness condition is satisfied. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

15.
In this paper, a least-squares finite element method for scalar nonlinear hyperbolic balance laws is proposed and studied. The approach is based on a formulation that utilizes an appropriate Helmholtz decomposition of the flux vector and is related to the standard notion of a weak solution. This relationship, together with a corresponding connection to negative-norm least-squares, is described in detail. As a consequence, an important numerical conservation theorem is obtained, similar to the famous Lax–Wendroff theorem. The numerical conservation properties of the method in this paper do not fall precisely in the framework introduced by Lax and Wendroff, but they are similar in spirit as they guarantee that when L2 convergence holds, the resulting approximations approach a weak solution to the hyperbolic problem. The least-squares functional is continuous and coercive in an H−1-type norm, but not L2-coercive. Nevertheless, the L2 convergence properties of the method are discussed. Convergence can be obtained either by an explicit regularization of the functional, that provides control of the L2 norm, or by properly choosing the finite element spaces, providing implicit control of the L2 norm. Numerical results for the inviscid Burgers equation with discontinuous source terms are shown, demonstrating the L2 convergence of the obtained approximations to the physically admissible solution. The numerical method utilizes a least-squares functional, minimized on finite element spaces, and a Gauss–Newton technique with nested iteration. We believe that the linear systems encountered with this formulation are amenable to multigrid techniques and combining the method with adaptive mesh refinement would make this approach an efficient tool for solving balance laws (this is the focus of a future study).  相似文献   

16.
Summary The finite volume element method (FVE) is a discretization technique for partial differential equations. It uses a volume integral formulation of the problem with a finite partitioning set of volumes to discretize the equations, then restricts the admissible functions to a finite element space to discretize the solution. this paper develops discretization error estimates for general selfadjoint elliptic boundary value problems with FVE based on triangulations with linear finite element spaces and a general type of control volume. We establishO(h) estimates of the error in a discreteH 1 semi-norm. Under an additional assumption of local uniformity of the triangulation the estimate is improved toO(h 2). Results on the effects of numerical integration are also included.This research was sponsored in part by the Air Force Office of Scientific Research under grant number AFOSR-86-0126 and the National Science Foundation under grant number DMS-8704169. This work was performed while the author was at the University of Colorado at Denver  相似文献   

17.
张贵明  孙萍  罗振东 《计算数学》2010,32(3):327-336
本文研究二阶椭圆方程基于泡函数的稳定化的二阶混合有限元格式,通过消去泡函数导出一种自由度很少的简化的稳定化的二阶混合有限元格式, 误差分析表明消去泡函数的简化格式与带有泡函数的格式具有相同的精度而可以节省6Np个自由度(其中Np三角形剖分中的顶点数目).    相似文献   

18.
This paper discusses a finite element approximation for an integral equation of the second kind deduced from a potential theory boundary value problem in two variables. The equation is shown to admit a unique solution, to be variational and coercive in the Hilbert space of functions σ ε H1/2(Γ), frd γ = 0. The Galerkin method with finite elements as trial functions is shown to lead to an optimal rate of convergence.  相似文献   

19.
We analyze an adaptive finite element/boundary element procedure for scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone operator such as the p-Laplacian is coupled to the linear Laplace equation on the exterior domain. The problem is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which is then solved using the Uzawa algorithm and adaptive mesh refinements based on a gradient recovery scheme. The Galerkin approximations are shown to converge to the unique solution of the variational problem in a suitable product of L p - and L 2-Sobolev spaces.  相似文献   

20.
It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of nth order accuracy in the energy norm called P n mod elements. For n ≤ 3 we show that the stability condition holds if the velocity space is constructed using the P n mod elements and the pressure space consists of continuous piecewise polynomial functions of degree n. This research has been supported by the Grant Agency of the Czech Republic under the grant No. 201/05/0005 and by the grant MSM 0021620839.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号