首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive thermal and relaxational behavior in the blends of linear low-density polyethylene (LLDPE) (1-octene comonomer) with low-density polyethylene (LDPE) and high-density polyethylene (HDPE) have been investigated to elucidate miscibility and molecular relaxations in the crystalline and amorphous phases by using a differential scanning calorimeter (DSC) and a dynamic mechanical thermal analyzer (DMTA). In the LLDPE/LDPE blends, two distinct endotherms during melting and crystallization by DSC were observed supporting the belief that LLDPE and LDPE exclude one another during crystallization. However, the dynamic mechanical β and γ relaxations of the blends indicate that the two constituents are miscible in the amorphous phase, while LLDPE dominates α relaxation. In the LLDPE/HDPE system, there was a single composition-dependent peak during melting and crystallization, and the heat of fusion varied linearly with composition supporting the incorporation of HDPE into the LLDPE crystals. The dynamic mechanical α, β, and γ relaxations of the blends display an intermediate behavior that indicates miscibility in both the crystalline and amorphous phases. In the LDPE/HDPE blend, the melting or crystallization peaks of LDPE were strongly influenced by HDPE. The behavior of the α relaxation was dominated by HDPE, while those of β and γ relaxations were intermediate of the constituents, which were similar to those of the LLDPE/HDPE blends. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1633–1642, 1997  相似文献   

2.
In this study, highly oriented shish-kebab structure was achieved via imposing oscillatory shear on the melts of linear low density polyethylene (LLDPE)/high density polyethylene (HDPE) blends during the packing stage of injection molding. To investigate the effect of molecular weight of HDPE on the formation of shish-kebab structure, two kinds HDPE with large melt flow index (low molecular weight) and small melt flow index (high molecular weight) were added into LLDPE matrix. The structural characteristics of LLDPE/HDPE blends were systematically elucidated through two-dimensional wide-angle x-ray scattering, scanning electron microscopy, and differential scanning calorimetry. Interestingly, an unexpected molecular weight dependence of shish-kebab structure of the prepared samples was found that the addition of HDPE with low molecular weight resulted in an higher degree of orientation, better regularity of lamellar arrangement, thicker lamellar size, and higher crystal melting temperature than that adding HDPE with high molecular weight. Correspondingly, the blend containing low molecular weight HDPE had better tensile strength. A possible mechanism was suggested to elucidate the role of HDPE molecular weight on the formation of shish-kebab structure in the oriented blends, considering the change of chain mobility and entanglement density with change of molecular weight.  相似文献   

3.
Reactive compatibilization of immiscible polymers is becoming increasingly important and hence a representative study of a polycarbonate/high density polyethylene (PC/HDPE) system is the focus of this paper. A grafted copolymer PC‐graft‐ethylene‐co‐acrylic acid (PC‐graft‐EAA) was generated as a compatibilizer in situ during processing operation by ester and acid reaction between PC and ethylene‐acrylic acid (EAA) in the presence of the catalyst dibutyl tin oxide (DBTO). As the polyethylene (PE) matrix does not play any part during the synthesis of the copolymer and since PC and EAA are also immiscible, to simplify the system, the influence of this copolymer formation at the interface between PC and EAA on rheological properties, phase morphology, and crystallization behavior for EAA/PC binary blends was first studied. The equilibrium torque increased with the DBTO content increasing in EAA/PC blends on Haake torque rheometer, indicating the in situ formation of the graft copolymer. Scanning electron microscopy (SEM) studies of cryogenically fractured surfaces showed a significant change at the distribution and dispersion of the dispersed phase in the presence of DBTO, compared with the EAA/PC blend without the catalyst. Differential scanning calorimetry (DSC) studies suggested that the heat of fusion of the EAA phase in PC/EAA blends with or without DBTO reduced with the formation of the copolymer compared with pure EAA. Then morphological studies and crystallization behavior of the uncompatibilized and compatibilized blends of PC/PE were studied as functions of EAA phase concentration and DBTO content. Morphological observations in PC/PE blends also revealed that on increasing the EAA content or adding the catalyst DBTO, the number of microvoids was reduced and the interface was intensive as compared to the uncompatibilized PC/PE blends. Crystallization studies indicated that PE crystallized at its bulk crystallization temperature. The degree of crystallinity of PE phase in PC/PE/EAA blends was also reduced with the addition of EAA and DBTO compared to the uncompatibilized blends of PC/PE, indicating the decrease in the degree of crystallinity was more in the presence of PC‐graft‐EAA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
 This study presents DSC and optical microscopy investigations on copolymers of semiflexible liquid crystalline polymer SBH 112 grafted to functionalized low molecular mass polyethylene (PEox) obtained by melt polycondensation or reactive blending procedures. The crystallization behavior of the PE-g-SBH copolymers has been studied under non-isothermal measurement conditions carried out at different cooling rates. The crystallization temperature (T cr) of the PE component of the copolymers decreases steadily upon increasing the concentration of the SBH grafts. It was found that the copolymers prepared by reactive blending crystallize at slightly higher T cr than those prepared by polycondensation and with a higher rate, confirmed by the determination of the crystallization rate coefficients (CRC). The results have been interpreted by the fact that the PE crystallizable segments and SBH grafts of the copolymers obtained by reactive blending are longer than those of the copolymers prepared by polycondensation. The overall nonisothermal crystallization kinetics has been studied by the Harnisch and Muschik equation. The results show that the mechanism of the crystallization of the PE phase changes only when the SBH content overruns ca.50%, due to the decrease of both nucleation and crystal growth rates. The morphology of the copolymers crystallized nonisothermally from melt has been examined by polarization microscopy. Fairly homogeneous morphology with tiny PE spherulites is observed for PE-g-SBH copolymers prepared by polycondensation with SBH as the minor phase. No sign of the dispersed LCP domains can be recognized. On the contrary, the morphology of the copolymers prepared by reactive blending is distinctly biphasic. The allegedly longer PE segments crystallize into tiny spherulites too, but the LC domains formed by the long SBH branches present in this type of copolymers appear clearly in the micrographs at room temperature. It is concluded that the copolymers prepared by reactive blending would be more effective as compatibilizers for PE/SBH blends than those prepared by polycondensation. Received: 9 October 1996 Accepted: 13 January 1997  相似文献   

5.
The influence of the cure process and the resulting reaction‐induced phase separation (RIPS) on the crystallization and melting behavior of polyoxymethylene (POM) in epoxy resin diglycidylether of bisphenol A (DGEBA) blends has been studied at different cure temperatures (180 and 145 °C). The crystallization and melting behavior of POM was studied with DSC and the simultaneous blend morphology changes were studied using OM. At first, the influence of the epoxy monomer on the dynamically crystallized POM was investigated. Secondly, a cure temperature above the melting point of POM (Tcure = 180 °C) was applied for blends with curing agent to study the influence of resulting phase morphology types on the crystallization behavior of POM in the epoxy blends. Large differences between particle/matrix and phase‐inverted structures have been observed. Thirdly, the cure temperature was lowered below the melting temperature of POM, inducing isothermal crystallization prior to RIPS. As a consequence, a distinction was made between dynamically and isothermally crystallized POM. Concerning the dynamically crystallized material, a clear difference could be made between the material crystallized in the homogeneous sample and that crystallized in the phase‐separated structures. The isothermally crystallized POM was to a large extent influenced by the conversion degree of the epoxy resin. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2456–2469, 2007  相似文献   

6.
The structure and thermal properties of linear low‐density polyethylene (LLDPE)/medium soft paraffin wax blends, prepared by melt mixing, were investigated by differential scanning calorimetry (DSC) and small‐ and wide‐angle X‐ray scattering (SAXS and WAXS). The blends form a single phase in the melt as determined by SAXS. Upon cooling from the melt, two crystalline phases develop for blends with more than 10 wt % wax characterized by widely different melting points. The wax acts as an effective plasticizer for LLDPE, decreasing both its crystallization and melting temperature. The higher melting point crystalline phase is formed by less branched LLDPE fractions. On the other hand, the lower melting point crystalline phase is a wax‐rich phase constituted by cocrystals of extended chain wax and short linear sequences of highly branched LLDPE chains. The presence of cocrystals was evidenced by standard DSC results, successive self‐nucleation and annealing (SSA) thermal fractionation and by the detection of a new SAXS signal attributed to the lamellar long period of the cocrystals. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1469–1482  相似文献   

7.
An indication for the mutual influence of LDPE and PP was the change of the morphology parameters of PE and PP at different ratios of the polymers in blends. That influence depends on the blend composition and is different for PE and PP. It is especially interesting in the blend PE75/PP25 where the influence between PE and PP shows dependence also on the sample geometry. Melting parameters, non-isothermal crystallization parameters - crystallization peak temperature Tc, crystallization begin temperature Tonset, half-width w1/2 of the crystallization peak, degree of crystallinity α and crystallization rate coefficient CRC, as well as the isothermal kinetics parameters showed dependence on the blend composition. It was established that PE is more stable then PP concerning the mutual influence of both polymers on their crystallization. It was established that PE affects the crystal nucleation of PP and causes a decreasing of PP spherulite size.  相似文献   

8.
From glass transition Tg measurements on isotactic polystyrene (IPS)–poly(2,6-dimethyl phenylene oxide) (PPO) blends, it was concluded that thoroughly annealed, freeze-dried samples, or samples evaporated from solution at high temperature, are homogeneous. Without annealing, the freeze-dried blends show two to three Tg's characteristic of the presence of different phases. The overall crystallization rate of these samples is much higher than that observed with annealed samples. The presence of dissolved PPO in annealed samples reduces the overall crystallization rate and the spherulitic growth rate, compared to IPS. The melting behavior of the blends is influenced by the extent of mixing of both polymers. Without annealing, isothermally crystallized, freeze-dried blends show the same melting behavior as IPS (i.e., multiple melting). In homogeneous annealed samples the rate of reorganization is strongly reduced and multiple melting only occurs at low scanning rate (e.g., 1°C/min). This behavior is influenced by the crystallization temperature and by the composition of the blends. The addition of PPO has no influence on the relation between melting point and crystallization temperature and the same equilibrium melting point is found by extrapolation.  相似文献   

9.
用DSC研究了HDPE与MMT负载的催化剂熔融共混和原位聚合得到的两种纳米复合材料的熔融、 结晶行为和等温结晶动力学.  结果表明, HDPE与熔融共混样品的结晶度、 平衡熔点、 球晶生长速率和结晶能力大体相同; 原位聚合得到的HDPE/MMT纳米复合材料的结晶度和平衡熔点高于纯HDPE; 在相同过冷度条件下熔融结晶速率和结晶能力低于纯HDPE, 而在相同结晶温度Tc下, 熔融结晶速率和结晶能力则高于纯HDPE.  纯HDPE的晶体生长侧向单位面积表面自由能最小, 其次是熔融共混样品, 原位聚合样品最大, 且随MMT含量的增加逐渐升高.  相似文献   

10.
The aim of this article was to show the effects of the electron radiation dose and presence of a compatibiliser on the peak melting temperature (Tpm) of the crystalline phase, crystallinity (Xc), and melt flow rate (MFR) of granulated blends of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET) as well as of blends of LDPE, HDPE, and PP. The purpose of applying the high-energy electron radiation with doses up to 300 kGy and of adding a compatibiliser was to enhance mechanical properties of the studied blends and, at the same time, to investigate the possibility of using this technique in the processes of recycling polymeric materials. As the compatibilisers, the styrene–ethylene/butylene–styrene elastomer grafted with maleic anhydride (SEBS-g-MA) and trimethylol propane trimethacrylate (TMPTA) were utilised; they were added at the amounts of 5, 10, and 15 wt% and 1, 2, and 3 wt%, respectively. The enhancement of mechanical properties was accompanied by the following effects, discussed in this article: (i) a decrease in the peak melting temperature upon the electron radiation for the crystalline phase of LDPE, HDPE, and PP that constituted the studied granulated blends and (ii) changes in MFR upon both the electron radiation and the addition of compatibilisers.  相似文献   

11.
Crystallization behaviour of blends of poly(N-methyldodecano-12-lactam) (PMDL) with statistical copolymer poly(styrene-stat-acrylic acid) (PSAA) has been studied by the DSC and WAXD methods. The blend films prepared from dioxane solutions were crystallized at laboratory temperature for five days. Approximate crystallinities of as-prepared neat lower- PMDL 5 and higher-molecular weight PMDL 45 were 28% and 19%, respectively. With increasing PSAA content in the blends the crystallinities decreased sharply. The melting point of the primary crystalline structure of PMDL showed a decreasing dependence on PSAA content in the blends, confirming miscibility of the PMDL-PSAA pair. Recrystallization was strongly suppressed in the blends. The lower-melting endotherm appearing at about 10-15 °C above the crystallization temperature was attributed to melting to less perfect structures formed during secondary crystallization. In neat PMDL, the extent of secondary crystallization was approximately 5-10%. In the blends containing 20% PSAA approximate relative proportion of secondary crystallites on total crystallinity was 40% and 60% for the blends with PMDL 5 and PMDL 45, respectively. WAXD measurements did not reveal any change in crystal modification on blending. Increased Tg in blends of flexible PMDL cannot play a significant role in suppression of primary in favour of secondary crystallization. This was attributed to low mobility of PMDL chains due to dilution effect and specific interactions with the amorphous copolymer component, and, in case of the higher-molecular-weight PMDL, a greater involvement of entanglements. Higher Tg of blends was involved in retardation of non-isothermal crystallization on cooling and subsequent cold crystallization.  相似文献   

12.
Measurements of flow-induced orientation and crystallization have been made on a high-density polyethylene melt (HDPE) undergoing a planar extensional flow in a four-roll mill. The HDPE was suspended as a cylindrical droplet at the flow stagnation point in a linear low density polyethylene (LLDPE) carrier phase. Deformation and crystallization of the HDPE droplet phase were monitored using video imaging in conjunction with measurement of the birefringence and dichroism to quantify the in-situ transformation kinetics. Planar deformation rates along the symmetry axis of the molten HDPE phase were on the order of 0.03 s?1. Measurements of the initial transformation rate following flow cessation at 131.5°C and 133.2°C show a dependence on initial amorphous phase orientation and the total Hencky strain achieved during flow. The flow-induced crystallization rate is enhanced over the quiescent transformation rate by orders of magnitude, however, the dependence on temperature is less dramatic than expected for a nucleation-controlled growth mechanism. Analysis demonstrates that the melting point elevation model cannot account either qualitatively or quantitatively for the phenomena observed, suggesting that alternative explanations for the strong orientation dependence of the transformation rate are needed.  相似文献   

13.
Ultrahigh molecular mass polyethylene (UHMMPE) is filled with carbon nano-tubes (CNTs) by solution in the presence of maleic anhydride grafted styrene-(ethylene-co-butylene)-styrene copolymer (MA-SEBS) as a compatibilizer. The UHMMPE/CNT composites crystallized from melt were prepared at a cooling rate of 20°C min-1. The melting and crystallization behaviors of UHMMPE/ CNT composites were investigated by differential scanning calorimetry. The results showed that onset melting temperature (T m) and degree of crystallinity (X c) of UHMMPE/CNT composites crystallized from solution are higher than those from melt due to the larger crystalline lamellar thickness. The onset crystallization temperature (T c) of UHMMPE/CNT composites tends to shift to higher temperature region with increasing CNT content in the composites. Tm and Tc of UHMMPE phase in UHMMPE/CNT composites decrease with the addition of MA-SEBS. Moreover, the crystallization rate of UHMMPE phase in UHMMPE/CNT composite is increased due to the introduction of CNTs. MA-SEBS acts as compatilizer, enhances the dispersion of CNTs in the UHMMPE matrix. Thereby, the crystallization rate of UHMMPE phase in UHMMPE/CNT composite is further increased with the addition of MA-SEBS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
通过采用差示扫描量热仪(DSC)主要研究了结晶-非晶嵌段共聚物聚乙烯基环己烷-b-聚乙烯-聚乙烯基环己烷(PVCH-b-PE-b-PVCH)溶液结晶样品的熔融与非等温再结晶过程.探讨了溶液结晶样品中微相分离结构的形成对嵌段共聚物受限结晶的影响,并发现样品在熔融后的非等温结晶过程中出现了多重结晶峰.通过对嵌段共聚物有序、...  相似文献   

15.
木工作用透射电子显微术及电子衍射技术研究3种PE(HDPE,LLDPE或LDPE)均聚物高取向薄膜的微结构。定量测定了它们的结晶尺寸。通过倾斜样品电子显微学研究确定了不同种PE纤维结构的对称性。  相似文献   

16.
The impact propylene copolymer(IPC)and isotactic polypropylene(iPP)were separately selected to prepare laminates with high density polyethylene(HDPE)by hot press.The peel forces of IPC/HDPE and i’PP/HDPE laminates were examined,and it was found that the welded joint strength in IPC/HDPE laminate was dramatically higher than that of iPP/HDPE laminate.According to the special microstructure of IPC,the co-crystallization of the ethylene segments in ethylene-propylene block copolymer(EbP)component of IPC and the PE chain in HDPE was proposed to explain the high-strength welding.The DSC results indicated that there indeed existed some interaction between IPC and HDPE,and the crystallizable PE component in IPC could affect the crystallization of HDPE.The scanning electron microscope(SEM) observations of IPC/HDPE blends demonstrated that HDPE tended to stay with the PE-rich EbP chains to form the dispersed phase,indicating the good miscibility between HDPE and EbP components of IPC.According to the above results,the effect of co-crystallization of the PE components of the IPC and HDPE on the high weld strength of IPC/HDPE laminate was confirmed.  相似文献   

17.
The non-isothermal crystallization and melting of ultra high molecular weight polyethylene (UHMWPE) were observed by means of differential scanning calorimetry and compared with those of ordinary high-density polyethylene (HDPE). The crystallization temperature (T c ) and melting point (T m ) of UHMWPE were found to be higher thanT c andT m of HDPE, and the latent heat of crystallization (δH c ) and fusion (δH m ) of UHMWPE are smaller thanδH c andδH m of HDPE. The results were explained in terms of the theory of polymer crystallization and the structure characteristics of UHMWPE. The relationships between the parameters (T c ,T T ,δH c andδH m ) and the molecular weight (M) of UHMWPE are discussed. Processing of the experimental data led to the establishment of four expressions describing the above relationships.  相似文献   

18.
In this work,the crystallization of immiscible polypropylene(PP)/polybutene-1(PB)blends,in particular the effect of crystal morphology of PP(HTC,high Tm component)on the subsequent crystallization behavior of PB(LTC,low Tm component)was studied.Herein,we firstly indicated that PP/PB blends were not completely compatible but characterized as the LCST-like phase diagram above the melting temperature of PP.Crystallization of PP at different crystallization temperatures brought about different PP crystal morphologies and PB was segregated and confined at different locations.Much larger-sized domain of PB component appeared in PP spherulites resulting from the effects of non-negligible phase separation and the slower PP crystallization rate as PP crystallized at high temperature.As temperature continued to fall below Tm of PB,the fractionated and confined crystallization of PB occurred in the framework of PP spherulites,reflected by the decreased crystallization temperature(Tc)of PB and the formation of form I′beside form II.Notably,if PP previously crystallized at high Tc,fractionated crystallization of PB became predominant and confined crystallization of PB became weak due to the much wider droplet-size distribution of PB domains.  相似文献   

19.
The effect of time-temperature treatment on morphology of polyethylene-polypropylene (PE-PP) blends wasstudied to establish a relationship between thermal history, morphology and mechanical properties. Polypropylene (PP)homopolymers were used to blend with various polyethylenes (PE), including high density polyethylene (HDPE), lowdensity polyethylene (LDPE), linear low density polyethylene (LLDPE), and very and ultra low density polyethylene(VLDPE and ULDPE). The majority of the blends were prepared at a ratio of PE:PP = 80:20, while blends of PP and LLDPEwere prepared at various compositions. Thermal treatment was carried out at temperatures between the crystallizationtemperatures of PP and PEs to allow PP to crystallize first from the blends. On cooling further, PE crystallized too. A verydiffuse PP spherulite morphology in the PE matrix was formed in some partially miscible blends when PP was less than 20%by mass. Droplet-matrix structures were developed in other blends with either PP or PE as dispersed domains in a continuousmatrix, depending on the composition ratio. The scanning electron microscopy (SEM) images displayed a fibrillar structureof PP spherulite in the LLDPE-PP (80:20) and large droplets of PP in the HDPE-PP (80:20) blend, providing larger surfacearea and better bonding in the LLDPE-PP (80:20) blends. This explains why the blends with diffuse spherulite morphologyshowed greater improvement in tensile properties than droplet-matrix morphology blends after time-temperature treatment.  相似文献   

20.
Blends of Poly(butylene terephthalate), PBT, with Polycarbonate, PC, were studied for a range of molecular weights and blend compositions. Blends were available in PBT/PC compositions 80/20 and 40/60, and with Mw designated by H (high) or L (low). Samples were prepared by melt crystallization, or by cold crystallization following a rapid quench from the melt. Addition of PC reduces the crystallization kinetics of PBT so that the resulting crystals are more perfect than those which form in the homopolymer. Degree of crystallinity of the blends followed the rank ordering: L/L > L/H > H/L = H/H. The glass transition behavior was investigated using dynamic mechanical analysis (DMA) and modulated differential scanning calorimetry (MDSC). All blends exhibited two glass transitions at intermediate temperatures between the Tgs of the homopolymers, indicating existence of a PBT-rich phase and a PC-rich phase. Blends L/L were most, and H/H the least, miscible. Small-angle X-ray scattering was performed at room temperature on cold crystallized blends, or at elevated temperature during melt crystallization. The long period was consistently larger, and the linear stack crystallinity was consistently smaller, in blends L/L or H/L. These results indicate that in blends containing low Mw PC, there is more PC located within the PBT-rich phase. The long period was consistently smaller in cold crystallized samples, while the linear stack crystallinity was nearly the same, regardless of melt or cold crystallization treatment. Reduction of the average long period in cold crystallized samples could result from crystallization of PBT within the PC-rich phase. This is consistent with thermal analysis results, which indicate that cold crystallized samples have greater overall crystallinity than melt crystallized samples. A hypothetical liquid phase diagram is presented to explain the differences between melt and cold crystallized blends. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号