Summary: A novel accelerated fracture mechanics extrapolation procedure based on cyclic test with cracked round bar (CRB) specimens was verified by a correlation of real pipe failure time to simulated failure times at a temperature of 60 °C. The procedure was applied to predict the long-term failure of modern PE 80 and PE 100 pipes 23 °C. Moreover, the used stress intensity factor concept also allows to consider the impact of arbitrary additional loading situations like soil loads or point loads and to assess pipe lifetime under complex loading situations. 相似文献
Summary: Exfoliated and intercalated polyethylene/montmorillonite (PE/MMT) nanocomposites with high MMT content were prepared by in situ polymerization. The isothermal crystallization kinetics of the nanocomposites were analyzed with Lauritzen–Hoffman regime theory. Regime III crystallization, which is difficult to observe in linear polyethylene, appears in the PE/MMT nanocomposites. The broader temperature range of regime III crystallization in PE/MMT nanocomposites shows that the mobility and reptation ability of the PE chains are greatly reduced by the MMT, especially in the intercalated nanocomposite.
Plots of ln K/n + U*/R(Tc − T0) against 1/Tc(ΔT)f for the intercalated and exfoliated PE/MMT nanocomposites. 相似文献
A kinetic Monte Carlo model was developed to simulate the polymerization of ethylene with palladium–α‐diimine catalyst wherein hyperbranched molecules are formed through a chain‐walking mechanism. The total degree of branching and the distribution of short branches obtained with the model agree well with reported 13C NMR experimental results. Different chain topologies were generated by varying the probability of chain walking, Pw , which controls the competition between chain‐walking and monomer insertion. Molecular Monte Carlo simulations were subsequently conducted to study the conformations of isolated molecules (created by the kinetic Monte Carlo scheme) to relate molecular shape and topology. Our results provide evidence that the topology varies from predominantly linear with many short branches at low Pw to a densely branched, globular structure at high Pw . In contrast to experimental observations, our results for the molecular weight (N) dependence of the radius of gyration (Rg ∝ Nv) indicate that the branching topology has an effect on this relation, i. e., high‐Pw molecules have a smaller scaling exponent v. The simulated N‐dependence of the second virial coefficient exhibits a similar behavior. We also discuss the unusual conformational behavior of highly branched polymers obtained when Pw → 1. 相似文献
A series of metallocenes, namely [Cp2ZrCl2], [(MeCp)2ZrCl2], [(nBuCp)2ZrCl2], [(iBuCp)2ZrCl2], [(tBuCp)2ZrCl2], [Cp2TiCl2], [Et(Ind)2ZrCl2], [Et(IndH4)2ZrCl2] and [MeSi2(Ind)2ZrCl2)], were combined in a 1:1 molar ratio within a reactor for ethylene polymerization, with MAO as the cocatalyst. The catalysts were characterized by cyclic and differential pulse voltammetry. The combined systems that showed the highest and lowest activities were combined in 1:3 and 3:1 molar ratios. The catalyst activity in the ethylene polymerization reaction is discussed in terms of the estimated consumption rate, decomposition rate constant and half‐life of the metallocene species formed with MAO in an ethylene atmosphere.
Summary: Three different polyethylene (PE) pipe grades as well as three different lots of one of the grades were investigated by cyclic tests with cracked round bar (CRB) specimens, concerning resistance to slow crack growth. To enhance the test sensibility and proof its applicability for a quick quality assurance method various molecular and morphological characterizations on compression molded plates were carried out, with special attention on the influence of molecular and morphological differences, as well as lot to lot variations on the resistance to slow crack growth. The cyclic CRB tests allowed a ranking of the different pipe grades and lots with short testing times per material and testing machine, as a function of failure time as well as of crack initiation time with further reduction of testing time of about 50%. Moreover the ranking corresponded to the expectations based on the molecular and morphological properties of the materials, where only minor changes in the molecular mass distribution and the co-monomer concentration in case of lot to lot variations were proofed reliably. 相似文献
An artificial neural network (ANN) is applied to determine appropriate parameters in copolymerization of ethylene and 1-octene via metallocene catalytic system for producing a copolymer with desired chain microstructures. The polymerization parameters of interests are polymerization temperature, ethylene pressure, and the amount of hydrogen used. The ANN used is a feed-forward network with a back propagation learning method and has a 5-6-6-3 architecture. When comparing with both training and testing experimental data sets, it was found that ANN can provide a good guesstimation of polymerization parameters. 相似文献
Summary: Crystallization analysis fractionation (Crystaf) is a polymer characterization technique based on differences in chain crystallizabilities in a dilute solution during non-isothermal crystallization. Crystaf profiles, a weight distribution function of chains crystallized at each temperature, can be used to infer the chemical composition distribution (CCD) of copolymers when a Crystaf calibration curve, a relationship between peak crystallization temperature and average comonomer content, is known. In this investigation, the effect of the number average molecular weight, comonomer type, and cooling rate on Crystaf calibration curves were experimentally investigated. It was found that the cooling rate and comonomer type may strongly affect Crystaf calibration curves, while the influence of molecular weight is relatively subtle. 相似文献
Summary: The thermal stability of a polyamide-6/low linear density polyethylene blend (PA6/LLDPE) was studied using thermal analysis techniques. The thermogravimetric studies carried out showed that when a diethyl maleate grafted styrene- ethylene/butadiene-styrene terpolymer (SEBS-g-DEM) is added to the PA6/LLDPE blend there is an actual enhancement of the thermal stability due to the increase in the interfacial area within the blend. The Invariant Kinetic Parameter method (IKP) proved to be a qualitative technique unfolding the type of degradation mechanisms taking place in the material vicinity. Nucleation and phase boundary reactions are the kinetic models of thermal decomposition with the most significant probability of occurring. 相似文献
Summary: A tandem catalytic system, composed of (η5‐C5H4CMe2C6H5)TiCl3 ( 1 )/MMAO (modified methyl aluminoxane) and [(η5‐C5Me4)SiMe2(tBuN)]TiCl2 ( 2 )/MMAO, was applied for the synthesis of ethylene–hex‐1‐ene copolymers with ethylene as the only monomer stock. During the reaction, 1 /MMAO trimerized ethylene to hex‐1‐ene, while 2 /MMAO copolymerized ethylene with the in situ produced hex‐1‐ene to poly(ethylene–hex‐1‐ene). By changing the catalyst ratio and reaction conditions, a series of copolymer grades with different hex‐1‐ene fractions at high purity were effectively produced.
The overall strategy of the tandem 1 / 2 /MMAO catalytic system. 相似文献
Two different samples of high-density polyethylene (HDPE) have been studied. One (isotropic) is extracted from the material core whereas the other (anisotropic) involves two sides which have been in contact with the injection mold. It is observed by NMR microscopy (using radiofrequency field gradients) that these two sides favor toluene penetration into the material. The distribution of toluene nuclear spin relaxation times (extracted from proton T1 and T2 images) exhibits likewise important differences between the two samples. These differences can be accounted for by partial molecular ordering at the vicinity of the “mold sides”. Finally, in investigating the anisotropic sample (without solvent), three different phases (two amorphous and one crystalline) are revealed by 13C chemical shift imaging experiments (performed with radiofrequency field gradients under CP/MAS conditions). Each amorphous component is preferentially present at one of the two “mold sides”. 相似文献
Summary: The kinetic behaviour of a supported metallocene catalyst in slurry polymerisation of ethylene with 1-hexene under industrially relevant reaction conditions has been studied. Polymerisation experiments were carried out in a 5-litre stirred tank reactor in a temperature range from 60 to 80 °C and ethylene partial pressures from 5 to 15 bar. Comonomer and hydrogen amounts were varied as well. The catalyst showed pronounced activation and slow deactivation during runtimes of about 1 hour. Strong influences of 1-hexene (“hexene effect”) and hydrogen (“hydrogen effect”) on the activity profiles were observed. Based on the experimental results, a kinetic model has been derived in order to describe and predict important polymerisation data such as activity profile, comonomer content and molecular weight distributions with respect to the reaction conditions. The presented kinetic model is able to describe the observed effects of 1-hexene and hydrogen on the activity profiles, as well as the comonomer incorporation across a broad range of polymerisation conditions. The molecular weight distributions can be simulated with good qualitative agreement to the experimental data. 相似文献