首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of random phase for a complex Duffing's system is investigated. We show as the intensity of random noise properly increases the chaotic dynamical behavior will be suppressed by the criterion of top Lyapunov exponent, which is computed based on the Khasminskii's formulation and the extension of Wedig's algorithm for linear stochastic systems. Also Poincaré map analysis, phase plot and the time evolution are carried out to confirm the obtained results of Lyapunov exponent on dynamical behavior including the stability, bifurcation and chaos. Thus excellent agreement between these results is found.  相似文献   

2.
As the analysis of the chaotic dynamical behavior of a parametric Duffing’s system, we show that chaos can be suppressed by addition the Gauss white noise phase and determined by the sign of the top Lyapunov exponent, which is based on the Khasminskii’s formulation and the extension of Wedig’s algorithm for linear stochastic systems. Also Poincaré map analysis is carried out to confirm the obtained results. So random phase can be realized as one of the methods of chaos control.  相似文献   

3.
Chaos control by harmonic excitation with proper random phase   总被引:3,自引:0,他引:3  
Chaos control may have a dual function: to suppress chaos or to generate it. We are interested in a kind of chaos control by exerting a weak harmonic excitation with random phase. The dual function of chaos control in a nonlinear dynamic system, whether a suppressing one or a generating one, can be realized by properly adjusting the level of random phase and determined by the sign of the top Lyapunov exponent of the system response. Two illustrative examples, a Duffing oscillator subject to a harmonic parametric control and a driven Murali-Lakshmanan-Chua (MLC) circuit imposed with a weak harmonic control, are presented here to show that the random phase plays a decisive role for control function. The method for computing the top Lyapunov exponent is based on Khasminskii's formulation for linearized systems. Then, the obtained results are further verified by the Poincare map analysis on dynamical behavior of the system, such as stability, bifurcation and chaos. Both two methods lead to fully consistent results.  相似文献   

4.
The asymptotic Lyapunov stability with probability one of Duffing–Mathieu system with time-delayed feedback control under white-noise parametric excitation is studied. First, the time-delayed feedback control force is expressed approximately in terms of the system state variables without time delay. Then, the averaged Itô stochastic differential equations for the system are derived by using the stochastic averaging method and the expression for the Lyapunov exponent of the linearized averaged Itô equations is derived. Finally, the effects of time delay in feedback control on the Lyapunov exponent and the stability of the system are analyzed. Meanwhile, the stability conditions for the system with different time delays are also obtained. The theoretical results are well verified through digital simulation.  相似文献   

5.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0 < α < 1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.  相似文献   

6.
The aim of this study is to present an analytical method to determine the minimum required damping moment for a stable ship in stochastic following seas modeled by using Gaussian white noise. Stochastic differential equation is used as a mathematical model to represent rolling motion of a ship. First, the minimum required damping is obtained analytically by using Lyapunov function. Second, analytically obtained damping values are verified by integrating the nonlinear stochastic rolling motion equation by stochastic Euler method (Euler–Maruyama Schema) to deduce whether rolling motion is stable or not. It can be seen from the results of numerical computation that the ship is sufficiently stable for the minimum required damping value obtained by the use of Lyapunov function and the minimum required damping is highly dependent on natural frequency of roll, diffusion constant and maximum variation of initial metacentric height.  相似文献   

7.
Vadim Potapov 《PAMM》2007,7(1):2090021-2090022
An effective method for the investigation of the stability for viscoelastic systems under a parametric stochastic excitation is proposed. The parametric force is assumed in the form of a Gaussian stationary colored noise. The method is based on the simulation of random processes, the numerical solution of differential equations, describing the perturbed motion of the considered system, and the calculation of top Liapunov exponents. The considered method makes it possible to estimate the almost sure stability and the stability with respect to statistical moments of the different order. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Stochastic chaos discussed here means a kind of chaotic responses in a Duffing oscillator with bounded random parameters under harmonic excitations. A system with random parameters is usually called a stochastic system. The modifier ‘stochastic’ here implies dependent on some random parameter. As the system itself is stochastic, so is the response, even under harmonic excitations alone. In this paper stochastic chaos and its control are verified by the top Lyapunov exponent of the system. A non-feedback control strategy is adopted here by adding an adjustable noisy phase to the harmonic excitation, so that the control can be realized by adjusting the noise level. It is found that by this control strategy stochastic chaos can be tamed down to the small neighborhood of a periodic trajectory or an equilibrium state. In the analysis the stochastic Duffing oscillator is first transformed into an equivalent deterministic nonlinear system by the Gegenbauer polynomial approximation, so that the problem of controlling stochastic chaos can be reduced into the problem of controlling deterministic chaos in the equivalent system. Then the top Lyapunov exponent of the equivalent system is obtained by Wolf’s method to examine the chaotic behavior of the response. Numerical simulations show that the random phase control strategy is an effective way to control stochastic chaos.  相似文献   

9.
This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of “Romeo’s romantic style”, are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.  相似文献   

10.
The present paper describes a non-linear third order coupled mathematical model of parametric resonance of ships in head seas. Coupling is contemplated by considering the restoring modes of heave, roll and pitch motions. Numerical simulations employing this new model are compared to experimental results corresponding to excessive motions of a transom stern fishing vessel in head seas. It is shown that this enhanced model matches its results with the experiments more closely than a second order model. It is shown that the new model, due to the introduction of the third order terms, entails qualitative differences when compared to the more commonly used second order model. The variational equation of the roll motion will not be in the form of a Mathieu equation. In fact, it is shown in the paper that the associated time-dependent equation falls into the category of a Hill equation. Additionally, a hardening effect is analytically derived, related to the third order coupling of modes and wave passage effects.  相似文献   

11.
Summary Some new examples are given of sequences of matrix valued random variables for which it is possible to compute the maximal Lyapunov exponent. The examples are constructed by using a sequence of stopping times to group the original sequence into commuting blocks. If the original sequence is the outcome of independent Bernoulli trials with success probability p, then the maximal Lyapunov exponent may be expressed in terms of power series in p, with explicit formulae for the coefficients. The convexity of the maximal Lyapunov exponent as a function of p is discussed, as is an application to branching processes in a random environment.  相似文献   

12.
We consider parametric families of differential systems with coefficients that are bounded and continuous on the half-line and uniformly in time continuously depend on a real parameter. For each Lyapunov exponent, we construct a family such that the Lyapunov exponent of its systems treated as a function of the parameter is not a lower semicontinuous function for any value of the parameter.  相似文献   

13.
Leo Dostal  Edwin Kreuzer 《PAMM》2009,9(1):555-556
For a vessel in open seas, the sudden appearance of roll motions due to waves from the front or rear leads to dangerous situations up to capsizing. The equations of motion used to analyze the roll motion include the righting lever curve. This curve is set up by means of hydrostatic calculations and approximated by polynomials for further analysis. The irregular waves are modeled in terms of a continuous-time ARMA process. The resulting model of stochastic differential equations is investigated numerically by Local Statistical Linearization. The necessary stochastic moments and their derivatives are computed using Itô's differential rule and Gaussian closure. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The invariant measure and Lyapunov exponent associated to the one–dimensional Schrödinger operator with a random potential (or, in other words, to the damped linear oscillator with random restoring force) are studied for small real noise (diffusions). Analytic expression are given via perturbation expansion. As a by-product, the well-known positivity of the Lyapunov exponent (in the undamped case) is reproved  相似文献   

15.
We derive and study stochastic dissipative dynamics on coadjoint orbits by incorporating noise and dissipation into mechanical systems arising from the theory of reduction by symmetry, including a semidirect product extension. Random attractors are found for this general class of systems when the Lie algebra is semi-simple, provided the top Lyapunov exponent is positive. We study in details two canonical examples, the free rigid body and the heavy top, whose stochastic integrable reductions are found and numerical simulations of their random attractors are shown.  相似文献   

16.
Bifurcations are discussed by the criterion of top Lyapunov exponent. Based on the local map and Kaminski’s algorithms, a general formulation of the top Lyapunov exponents is proposed for non-linear vibro-impact oscillators with Gaussian white noise perturbation. The analytical results are verified by phase portraits and bifurcation diagrams for a classical stochastic Duffing vibro-impact oscillator. Both results are consistent.  相似文献   

17.
Summary Previous results in the theory of large deviations for additive functionals of a diffusion process on a compact manifold M are extended and then applied to the analysis of the Lyapunov exponents of a stochastic flow of diffeomorphisms of M. An approximation argument relates these results to the behavior near the diagonal Δ in M 2 of the associated two point motion. Finally it is shown, under appropriate non-degeneracy conditions, that the two-point motion is ergodic on M 2-Δ if the top Lyapunov exponent is positive. At the period when this research was initiated, both authors where guests of the I.M.A. in Minneapolis. The first author was at Aberdeen University, Scotland when this article was prepared. Throughout the period of this research, the second author has been partially supported by N.S.F. grant DMS-8611487 and ARO grant DAAL03-86-K-171  相似文献   

18.
The paper considers the top Lyapunov exponent of a two-dimensional linear stochastic differential equation. The matrix coefficients are assumed to be functions of an independent recurrent Markov process, and the system is a small perturbation of a nilpotent system. The main result gives the asymptotic behavior of the top Lyapunov exponent as the perturbation parameter tends to zero. This generalizes a result of Pinsky and Wihstutz for the constant coefficient case.  相似文献   

19.
On the basis of the work of Goodwin and Puu, a new business cycle model subject to a stochastically parametric excitation is derived in this paper. At first, we reduce the model to a one-dimensional diffusion process by applying the stochastic averaging method of quasi-nonintegrable Hamiltonian system. Secondly, we utilize the methods of Lyapunov exponent and boundary classification associated with diffusion process respectively to analyze the stochastic stability of the trivial solution of system. The numerical results obtained illustrate that the trivial solution of system must be globally stable if it is locally stable in the state space. Thirdly, we explore the stochastic Hopf bifurcation of the business cycle model according to the qualitative changes in stationary probability density of system response. It is concluded that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simply way on the potential applications of stochastic stability and bifurcation analysis.  相似文献   

20.
We prove that under certain basic regularity conditions, a random iteration of logistic maps converges to a random point attractor when the Lyapunov exponent is negative, and does not converge to a point when the Lyapunov exponent is positive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号