首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multivariant phase field model for martensitic transformations in elastoplastic materials is introduced which is in mathematical terms the regularization of a sharp interface approach. The evolution of microstructure is assumed to follow a time dependent Ginzburg-Landau equation. The coupled problem of the mechanical balance equation and the evolution equations is solved using finite elements and an implicit time integration scheme. In this work, plasticity is considered for the austenitic phase which influences the martensitic evolution. With aid of the model these interactions are studied in detail. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The purpose of this work is the phase-field modeling of fcc-to-bcc martensitic phase transformations in polycrystals and the coupling with crystal plasticity. Assuming microscopic periodic fields, Green-function- and fast Fourier transform (FFT)-methods are used to solve the quasi-static balance of linear momentum. The Allen-Cahn evolution equation is discretized based on a semi-implicit time integration scheme in Fourier space. Two-dimensional results are presented and the interplay between martensitic phase transformation and plastic slip is studied at different stages of the deformation. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Simon Schmidt  Ralf Müller 《PAMM》2017,17(1):561-562
We study the martensitic transformation with a phase field model, where we consider the Bain transformation path in a small strain setting. For the order parameter, interpolating between an austenitic parent phase and martensitic phases, we use a Ginzburg-Landau evolution equation, assuming a constant mobility. In [1], a temperature dependent separation potential is introduced. We use this potential to extend the model in [2], by considering a transient temperature field, where the temperature is introduced as an additional degree of freedom. This leads to a coupling of both the evolution equation of the order parameter and the mechanical field equations (in terms of thermal expansion) with the heat equation. The model is implemented in FEAP as a 4-node element with bi-linear shape functions. Numerical examples are given to illustrate the influence of the temperature on the evolution of the martensitic phase. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
This work is motivated by cryogenic turning which allows end shape machining and simultaneously attaining a hardened surface due to deformation induced martensitic transformations. To study the process on the microscale, a multivariant phase field model for martensitic transformations in conjunction with a crystal plastic material model is introduced. The evolution of microstructure is assumed to follow a time-dependent Ginzburg-Landau equation. To solve the field equations the finite element method is used. Time integration is performed with Euler backward schemes, on the global level for the evolution equation of the phase field, and on the element level for the crystal plastic material law. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Metallic materials often exhibit a complex microstructure with varying material properties in the different phases. Of major importance in mechanical engineering is the evolution of the austenitic and martensitic phases in steel. The martensitic transformation can be induced by heat treatment or by plastic surface deformation at low temperatures. A two dimensional elastic phase field model for martensitic transformations considering several martensitic orientation variants to simulate the phase change at the surface is introduced in [1]. However here, only one martensitic orientation variant is considered for the sake of simplicity. The separation potential is temperature dependent. Therefore, the coefficients of the Landau polynomial are identified by results of molecular dynamics (MD) simulations for pure iron [1]. The resulting separation potential is applied to analyse the mean interface velocity with respect to temperature and load. The interface velocity is computed by use of the dissipative part to the configurational forces balance as suggested in [3]. The model is implemented in the finite element code FEAP using standard 4-node elements with bi-linear shape functions. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Lucia Panizzi  Dietmar Hömberg  Antonio Fasano 《PAMM》2007,7(1):1150809-1150810
A mathematical model for the gas carburizing in steel is presented. Carbon is dissolved in the surface layer of a low-carbon steel part at a temperature sufficient to render the steel austenitic, followed by quenching to form a martensitic microstructure. We have a nonlinear evolution equation for the temperature, coupled with a nonlinear evolution equation for the carbon concentration, both coupled with two ordinary differential equations to describe the phase fractions. We present mathematical results concerning the well-posedness of the model and finally present a simulation of the process using a finite element approximation. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
In this paper, the Bäcklund transformation of fractional Riccati equation is presented to establish traveling wave solutions for two nonlinear space–time fractional differential equations in the sense of modified Riemann–Liouville derivatives, namely, the space–time fractional generalized reaction duffing equation and the space–time fractional diffusion reaction equation with cubic nonlinearity. The proposed method is effective and convenient for solving nonlinear evolution equations with fractional order. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The macroscopic mechanical behavior of multi-phasic materials depends on the formation and evolution of their microstructure by means of phase transformation. In case of martensitic transformations, the resulting phase boundaries are sharp interfaces. We carry out a geometrically motivated discussion of the regularization of such sharp interfaces by use of an order parameter/phase-field and exploit the results for a regularized sharp interface model for two-phase elastic materials with evolving phase boundaries. To account for the dissipative effects during phase transition, we model the material as a generalized standard medium with energy storage and a dissipation function that determines the evolution of the regularized interface. Making use of the level-set equation, we are thereby able to directly translate prescribed sharp interface kinetic relations to the constitutive model in the regularized setting. We develop a suitable incremental variational three-field framework for the dissipative phase transformation problem. Finally, the modeling capability and the associated numerical solution techniques are demonstrated by means of a representative numerical example. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
杨志林 《大学数学》2002,18(5):54-57
利用 Hirota方法可直接求出非线性发展方程的孤立子解 ,此方法首要是通过一个变换将非线性发展方程约化为新的方程 ,即所谓的 Hirota双线性型 .本文对可积方程簇给出此 Hirota双线性型 ,从而该方程簇的孤立子解是可以求出的 .  相似文献   

10.
Charlotte Kuhn  Ralf Müller 《PAMM》2011,11(1):159-160
In the pioneering work by Griffith, it is assumed that a crack propagates, if this is energetically favorable. However, this original formulation requires a pre-existing initial crack. In order to bypass this deficiency of classical Griffith theory, Francfort and Marigo advocate a global variational criterion, where the total energy is minimized with respect to any admissible displacement field and crack set. Bourdin's regularized approximation of this variational formulation makes use of a continuous scalar field to indicate cracks. Based on this regularization a phase field fracture model is formulated. The crack field is assumed to follow a Ginzburg-Landau type evolution equation, and cracking is addressed as a phase transition problem. The coupled problem of mechanical balance equations and the evolution equation is solved using the finite element method combined with an implicit time integration scheme. The numerical solution naturally yields the crack evolution including crack propagation, kinking, branching and initiation without any additional criteria. In this work we study the driving mechanisms behind the crack evolution in the phase field fracture model and compare to the purely energetic considerations of the underlying variational formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Phase transformation in shape-memory alloys is known to cause electric resistivity variation that, under electric current, may conversely influence Joule heat production and thus eventually the martensitic transformation itself. A thermodynamically consistent general continuum-mechanical model at large strains is presented. In special cases, a proof of the existence of a weak solution is outlined, using a semidiscretization in time.  相似文献   

12.
By generating function based on Jackson’s q-exponential function and the standard exponential function, we introduce a new q-analogue of Hermite and Kampe-de Feriet polynomials. In contrast to q-Hermite polynomials with triple recurrence relations similar to [1], our polynomials satisfy multiple term recurrence relations, which are derived by the q-logarithmic function. It allows us to introduce the q-Heat equation with standard time evolution and the q-deformed space derivative. We find solution of this equation in terms of q-Kampe-de Feriet polynomials with arbitrary number of moving zeros, and solved the initial value problem in operator form. By q-analog of the Cole–Hopf transformation we obtain a new q-deformed Burgers type nonlinear equation with cubic nonlinearity. Regular everywhere, single and multiple q-shock soliton solutions and their time evolution are studied. A novel, self-similarity property of the q-shock solitons is found. Their evolution shows regular character free of any singularities. The results are extended to the linear time dependent q-Schrödinger equation and its nonlinear q-Madelung fluid type representation.  相似文献   

13.
齐次平衡法若干新的应用   总被引:19,自引:0,他引:19  
齐次平衡法是求非线性发展方程孤波解的一种有效方法.该文将以KdV方程为例把齐次平衡法向三个方面拓广应用:1)获得非线性发展方程新的具有更为丰富形式的精确解;2)寻找非线性发展方程的Backlund变换、Lax表示;3)求非线性发展方程的对称性约化和相似解.  相似文献   

14.
Martin Düsing  Rolf Mahnken 《PAMM》2015,15(1):285-286
The lower bainitic transformation is highly dependent on carbon diffusion. Bainite consists of bainitic ferrite, residual austenite and carbides. The numerical modeling of the interaction between these phases and the carbon is extremely demanding. The goal of this work is to describe the formation of carbides in lower bainite. To model the evolution of a bainitic sheaf a phase-field model is coupled with a Cahn-Hilliard equation simulating the diffusion. The system of equations is solved using the finite element method. Numerical examples show the growth of the ferrite and the following uphill diffusion within this phase. At accumulation points of carbon, carbides are precipitated. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper, a coupled nonlinear Schrödinger (CNLS) equation, which can describe evolution of localized waves in a two‐mode nonlinear fiber, is under investigation. By using the Darboux‐dressing transformation, the new localized wave solutions of the equation are well constructed with a detailed derivation. These solutions reveal rogue waves on a soliton background. Moreover, the main characteristics of the solutions are discussed with some graphics. Our results would be of much importance in predicting and enriching rogue wave phenomena in nonlinear wave fields.  相似文献   

16.
In this work, the integrable bidirectional sixth-order Sawada-Kotera equation is examined. The equation considered is a KdV6 equation that was derived from the fifth order Sawada-Kotera equation. Multiple soliton solutions and multiple singular soliton solutions are formally derived for this equation. The Cole-Hopf transformation method combined with the Hirota’s bilinear method are used to determine the two sets of solutions, where each set has a distinct structure.  相似文献   

17.
The purpose of this work is the multiscale FE-FFT-based prediction of macroscopic material behavior, micromechanical fields and bulk microstructure evolution in polycrystalline materials subjected to macroscopic mechanical loading. The macroscopic boundary value problem (BVP) is solved using implicit finite element (FE) methods. In each macroscopic integration point, the microscopic BVP is embedded, the solution of which is found employing fast Fourier transform (FFT), fixed-point and Green's function methods. The mean material response is determined by the stress-strain relation at the micro scale or rather the volume average of the micromechanical fields. The evolution of the microstructure is modeled by means of non-conserved phase-fields. As an example, the proposed methodology is applied to the modeling of stress-induced martensitic phase transformations in metal alloys. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper explores a link between a recently proposed macroscopic “smeared” approach and a microscopic/mesoscopic approach of sequential laminate type to model martensitic transformations. In addition, a numerical simulation of the stress-induced martensitic transformation in a single crystal has been performed upon simplification to small deformations. One significant observation in the results of such a simulation is the counter-intuitive change of preferred martensitic plate even under proportional loading conditions. It remains to be seen if it is an artifact of the procedure adopted or the actual shift of active martensitic plate system. A further step toward modeling polycrystal behavior using homogenization with simple bounds has been attempted. Hysteresis results show that there is no clear demarcation of critical stress at which the transformation occurs. This may be critical to the functional fatigue behavior of shape memory materials.  相似文献   

19.
We are concerned with the bending problem of fibrous composite beams in which fibres are made of shape memory alloys. These are alloys that may undergo a stress‐induced martensitic phase transformation. The matrix is treated as an elastic medium, and perfect bonding between matrix and fibres is supposed. In our model, the beam is decomposed into layers and the hysteretic behaviour of the shape memory fibres is taken into account. The boundary value problem is formulated in the form of an evolution variational inequality which, after finite element discretization, can be solved incrementally as a sequence of linear complementarity problems. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
On a microscopic length scale dual-phase steels exhibit a polycrystalline microstructure consisting of ferrite and martensite. In this work it is assumed that the martensitic phase behaves purely thermoelastic while for the ferritic phase a thermoplastic material model was developed based on the assumption that the driving mechanism for persistent deformation is the movement of dislocations on preferred planes in preferred directions. The necessary shear stress to move dislocations at a certain temperature and deformation rate is assumed to possess contributions from the atomic lattice, alloying atoms and the dislocation structure. To consider the influence of the dislocation structure, dislocation densities are introduced as state variables for which temperature and deformation rate dependent evolution equations are formulated. Since for general loading histories the model equations cannot be integrated analytically, a time discretized form of the model equations with an appropriate solution algorithm is presented. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号