首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This article deals with the determination of the static displacement function of an Euler-Bernoulli beam with two guided supports. To this end, the Green's function method is employed and exact solution is obtained. The Green's function of the problem is constructed, using pertinent boundary conditions of the problem. Nevertheless, the problem does not admit a Green's function due to a mathematical contradiction. In order to eliminate the trouble, the Fredholm Alternative Theorem is utilized and the Green's function is modified. In this case, application of this theorem adds a particular term to the Green's function which gives rise to an arbitrary constant in the Green's function. Moreover, it is shown that the problem may have no solution or an infinite number of solutions. Besides, the necessary condition for having any solution is investigated. This requirement, which states a significant rule in the mechanics of solids, is the static equilibrium of vertical forces acting on the beam. Some examples are presented and results are thoroughly discussed.  相似文献   

2.
Three-dimensional elastostatic Green's functions in anisotropic trimaterials are derived, for the first time, by applying the generalized Stroh's formalism and Fourier transforms. The Green's functions are expressed as a series summation with the first term corresponding to the full-space solution and other terms to the image solutions due to the interfaces. The most remarkable feature of the present solution is that the image solutions can be expressed by a simple line integral over a finite interval [0,2π]. By partitioning the trimaterial Green's function into a full-space solution and a complementary part, the line integral involves only regular functions if the singularity is within one of the three materials, being treated analytically owning to the explicit expression of the full-space solution. When the singularity is on the interface, which occurs if the field and source points are both on the same interface, the involved singularity is handled with the interfacial Green's functions.A numerical example is presented for a trimaterial system made of two anisotropic half spaces bonded perfectly by an isotropic adhesive layer, showing clearly the effect of material layering on the Green's displacements and stresses. Furthermore, by comparing the present Green's solution to the direct (two-dimensional) 2D integral expression which is also derived in this paper, it is shown that, the computational time for the calculation of the Green's function can be substantially reduced using the present solution, instead of the direct 2D integral method.  相似文献   

3.
The deformation of an infinite bar subjected to a self-equilibrated load distribution is investigated using the peridynamic formulation of elasticity theory. The peridynamic theory differs from the classical theory and other nonlocal theories in that it does not involve spatial derivatives of the displacement field. The bar problem is formulated as a linear Fredholm integral equation and solved using Fourier transform methods. The solution is shown to exhibit, in general, features that are not found in the classical result. Among these are decaying oscillations in the displacement field and progressively weakening discontinuities that propagate outside of the loading region. These features, when present, are guaranteed to decay provided that the wave speeds are real. This leads to a one-dimensional version of St. Venant's principle for peridynamic materials that ensures the increasing smoothness of the displacement field remotely from the loading region. The peridynamic result converges to the classical result in the limit of short-range forces. An example gives the solution to the concentrated load problem, and hence provides the Green's function for general loading problems.  相似文献   

4.
Based on the three-dimensional quasi-static general solution of the transversely isotropic pyroelectric material, the Green's function for an infinite transversely isotropic pyroelectric material under a step point heat source is presented in this paper. Firstly, a suitable function with an undetermined constant is constructed. Secondly, the Green's function can be obtained by substituting this function into the general solution. The undetermined constant can be determined by the heat conservation equation. Finally, the numerical results are shown in form of contours at the different times.  相似文献   

5.
ABSTRACT

The problem of an infinite elastic plane that contains a hole of arbitrary shape and is subjected to a concentrated unit load is considered. The Green's function (influence function) for the problem is formulated by means of two complex potential functions. This is accomplished by mapping the region that is exterior to the hole onto a unit circle. A class of closed contour hole shapes is analyzed. Green's functions for an elliptical hole and a class of triangular holes are determined. Green's functions for a class of rectangular holes are also discussed. In order to determine stress and displacement fields for the finite plane problem, Green's function is employed and an indirect boundary integral equation is formulated, with the integrand of the integral equation incorporating the effect of the hole. The contour of the hole is no longer considered a part of the boundary and only the contour of the region that is exterior to the hole is subdivided into boundary elements. Examples for elliptical and triangular holes are solved.  相似文献   

6.
The present work focuses on the two-dimensional anti-plane time-harmonic dynamic Green's functions for a circular inhomogeneity immersed in an infinite matrix with an imperfect interface, where both the inhomogeneity and matrix are assumed to be piezoelectric and transversely isotropic. Two types of imperfect interface, the spring-type interface with electromechanical coupling and the membrane-type interface, are considered. The former type is often used to model the electromechanical damage along the interface while the latter is largely employed to simulate surface/interface effect of nano-sized inhomogeneity. By using the Bessel function expansions, explicit solutions for the electromechanical fields induced by a time-harmonic anti-plane line force and line charge located in an unbounded matrix as well as the circular inhomogeneity are respectively derived. The present solutions can recover the anti-plane Green's functions for some special cases, such as the dynamic or quasi-static Green's functions of piezoelectricity with perfect interface as well as the dynamic or quasi-static Green's functions of pure elasticity with imperfect interface. For detailed discussions, selected analytical results are presented. Dependence of the electromechanical fields on circular frequency as well as interface properties is examined. The size effect related to interfacial imperfection is also discussed.  相似文献   

7.
Abstract

Stress intensity factors are evaluated for a singly or doubly cracked fastener hole with frictional traction in an anisotropic plate, using a special kernel boundary integral equation (BIE) approach. The integration kernel (Green's function) used in this BIE approach has already taken the presence of the crack (or cracks) into account, thus.avoiding the need for element discretization to model the stress singularity at the crack tip. The Green's function employed is that of an infinite anisotropic plate containing an elliptical hole or crack, and subjected to an arbitrarily positioned point force. Several types of normal and shear traction conditions at the pinhole interface are considered. Numerical results are obtained for various geometrical and loading conditions and are compared with known solutions, where available, for their isotropic counterparts.  相似文献   

8.
Explicit expressions of magnetoelectric Green's functions are obtained for a transversely isotropic medium exhibiting coupling between the static electric and magnetic fields utilizing the contour integral representation. Four Green's functions exist which represent the coupled static electric and magnetic response to a unit point electric or magnetic charge. The Green's functions are applied to analyze the inclusion and inhomogeneity problems in an infinite magnetoelectric medium, and explicit, closed form expressions are obtained for the Eshelby type tensors. The magnetoelectric Eshelby's tensors can be readily used in the solution of numerous problems in the mechanics and physics of magnetoelectric solids.  相似文献   

9.
The antiplane strain Green's functions for an applied concentrated force and moment are obtained for Cosserat elastic solids with extreme anisotropy, which can be tailored to bring the material in a state close to an instability threshold such as failure of ellipticity. It is shown that the wave propagation condition (and not ellipticity) governs the behaviour of the antiplane strain Green's functions. These Green's functions are used as perturbing agents to demonstrate in an extreme material the emergence of localized (single and cross) stress channelling and the emergence of antiplane localized folding (or creasing, or weak elastostatic shock) and faulting (or elastostatic shock) of a Cosserat continuum, phenomena which remain excluded for a Cauchy elastic material. During folding some components of the displacement gradient suffer a finite jump, whereas during faulting the displacement itself displays a finite discontinuity.  相似文献   

10.
Galerkin representations for the displacement vector, polarization vector and the potential field are obtained by elementary matrix inversions of the equations of equilibrium. Matrices of fundamental solutions of an infinite elastic dielectric continuum subjected to a concentrated body force, an electric force, and a charge density, are constructed. Theorems are proved on the discontinuity of double layer potentials and R, M, M operators of single layer potentials. By means of these theorems, the solution of the two basic boundary value problems has been reduced to the solution of a system of seven singular integral equations.  相似文献   

11.
Based on the complex variable function method, a new approach for solving the scattering of plane elastic waves by a hole with an arbitrary configuration embedded in an infinite poroelastic medium is developed in the paper. The poroelastic medium is described by Biot's theory. By introducing three potentials, the governing equations for Biot's theory are reduced to three Helmholtz equations for the three potentials. The series solutions of the Helmholtz equations are obtained by the wave function expansion method. Through the conformal mapping method, the arbitrary hole in the physical plane is mapped into a unit circle in the image plane. Integration of the boundary conditions along the unit circle in the image plane yields the algebraic equations for the coefficients of the series solutions. Numerical solution of the resulting algebraic equations yields the displacements, the stresses and the pore pressure for the porous medium. In order to demonstrate the proposed approach, some numerical results are given in the paper.  相似文献   

12.
In the present paper,the compatibility equation for the plane stress problems of power-law materials is transformed into a biharmonic equation by introducing the so-calledcomplex pseudo-stress function,which makes it possible to solve the elastic-plastic planestress problems of strain hardening materials described by power-law using the complexvariable function method like that in the linear elasticity theory.By using this generalmethod,the close-formed analytical solutions for the stress,strain and displacementcomponents of the plane stress problems’of power-law materials is deduced in the paper,which can also be used to solve the elasto-plastic plane stress problems of strain-hardeningmaterials other than that described by power-law.As an example,the problem of a power-law material infinite plate containing a circular hole under uniaxial tension is solved byusing this method,the results of which are compared with those of a known asymptoticanalytical solution obtained by the perturbation method.  相似文献   

13.
This study presents two-dimensional explicit full-field solutions of transversely isotropic magnetoelectroelastic bimaterials subjected to generalized line forces and edge dislocations using the Fourier-transform technique. One of the major objectives of this study is to analyze the physical meaning and the structure of the solution. Complete solutions for this problem consist only of the simplest solutions for an infinite medium. The solutions include Green's function of originally applied singularities in an infinite medium and thirty-two image singularities which are induced to satisfy interface continuity conditions. It is shown that the physical meaning of the solution is the image method. The mathematical method used in this study provides an automatic determination for the locations and magnitudes of image singularities. The locations and magnitudes of image singularities are dependent on the roots of the characteristic equation for bimaterials. The number and distribution for image singularities are discussed according to characteristic roots features. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces acting on generalized edge dislocations are easily derived from the full-field solutions of the generalized stresses. Numerical results for the full-field distributions of stresses, electric fields, and magnetic fields in bimaterials are presented. The image forces and equilibrium positions of one dislocation, two dislocations, and an array of dislocations are presented by numerical calculations and are discussed in detail.  相似文献   

14.
板材自由表面受法向集中力时的理论解   总被引:1,自引:0,他引:1  
基于三维轴对称弹性理论,利用镜像点方法,给出了无限板表面受法向集中力作用的显式理论解.该解可用作格林函数,来求解分布力的问题.由于板的两个表面的反复映射,载荷点的镜像点有无穷多个.严密解是以固定在各镜像点的局部坐标系下的位移函数的和的形式给出的.但只需考虑前几个镜像点,就可获得足够精确的解.关于各镜像点的位移函数,是以递推形式给出的,易于计算机编程.  相似文献   

15.
Singularity problems in an isotropic trimaterial are analyzed by the same procedure as in an anisotropic trimaterial of Part I [Int. J. Solids Struct. 39, 943–957]. `Trimaterial' denotes an infinite body composed of three dissimilar materials bonded along two parallel interfaces. Linear elastic isotropic materials under plane deformations are assumed, in which the plane of deformation is perpendicular to the two parallel interface planes, and thus Muskhelishvili's complex potentials are used. The method of analytic continuation is alternatively applied across the two parallel interfaces in order to derive the trimaterial solution in a series form from the corresponding homogeneous solution. A variety of problems, e.g. a bimaterial (including a half-plane problem), a finite thin film on semi-infinite substrate, and a finite strip of thin film, etc, can be analyzed as special cases of the present study. A film/substrate structure with a dislocation is exemplified to verify the usefulness of the solutions obtained.  相似文献   

16.
The concept of ellipsoidal anisotropy, first introduced in linear elasticity by Saint Venant, has reappeared in recent years in diverse applications from the phenomenological to micromechanical modeling of materials. In this concept, indicator surfaces, which represent the variation of some elastic parameters in different directions of the material, are ellipsoidal. This concept recovers different models according to the elastic parameters that have ellipsoidal indicator surfaces. An interesting feature of some models introduced by Saint Venant is the formation of analytical solutions for basic problems of linear elasticity. This paper has two main objectives. First, an accurate definition of the variety of anisotropy called ellipsoidal is provided, which corresponds to a family of materials that depends on 12 independent parameters, including varieties of orthotropic and non-orthotropic materials. An explicit nondegenerate Green function solution is established for these materials. Then, it is shown that the ellipsoidal model recovers a variety of phenomenological and theoretical models used in recent years, specifically for geomaterials and damaged or micro-cracked materials. These models can be used to approximate the elastic parameters of any anisotropic material with different fitting qualities. A method to optimize the parameters will be given.  相似文献   

17.
The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium. Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral, superposition of the influence field on a free surface, authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.  相似文献   

18.
Based on the assumption that the elastic strain of electrostrictive materials is a higher-order small quantity, this paper studies the 3D problem of an infinite electrostrictive solid with a flat elliptical crack which is electrically permeable. According to existing solutions of similar problems in pure elastic materials, with the displacement function method, we first derived explicit expression for displacement potential function and obtained stress field near the crack and open displacement of crack surface. Then, the general solution for the stress intensity factor was derived, and the corresponding solutions were also presented for a penny-shaped crack and a permeable line-crack as two special cases of the present problem. Finally, numerical results were given to discuss the effect of environment at infinity and electric field inside the crack on the stress-intensity factors.  相似文献   

19.
We analyze the infinite space solutions of the three-dimensional inhomogeneous wave equation (the ‘retarded potentials’ or ‘causal propagators’) for ellipsoidal sources and for sources of arbitrary shapes. The ‘short-time characteristics’ of the retarded potential for a spatially inhomogeneous source density of δ-shaped time profile is considered. It is found that, the short-time characteristics is governed by the spatial inhomogeneity of the source density in the immediate vicinity of a spacepoint.Surface integral representations are derived for spatial inhomogeneous source regions of ellipsoidal symmetry. For spherical sources these integral representations yield closed form solutions for the retarded potentials. We find that the wave field inside a spherical source consists of an incoming and outgoing spherical wave package, whereas the external wave field consists of an outgoing spherical wave package only. Characteristic runtime and superposition effects are discussed. Moreover, a numerical technique based on Gauss quadrature is applied to generate the wave field for a cubic source. The integral representations derived for the retarded potentials of inhomogeneous ellipsoidal sources are consistent with results previously derived by the authors for the Helmholtz potentials of homogeneous ellipsoids and ellipsoidal shells [Michelitsch, T.M., Gao, H., Levin, V.M., 2003. On the dynamic potentials of ellipsoidal shells. Q. J. Mech. Appl. Math. 56 (4), 629]. The derived solutions are crucial for many problems of wave propagation and diffraction theory as they may occur in materials science. As an example we give a formulation for the solution of the retarded Eshelby inclusion problem due to spatially and temporally varying eigenfields in the elastic isotropic infinite medium.  相似文献   

20.
When dynamic force is applied to a saturated porous soil, drainage is common. In this paper, the saturated porous soil with a two-phase saturated medium is simulated, and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem (the reciprocal theorem). According to the basic solution to Biot's equation, Green's function Gij and three terms of Green's function G4i, Gi4, and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented. The displacement field with drainage, the magnitude of drainage, and the pore pressure of the center explosion source are obtained in computation. The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared. Good agreement is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号