首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Tetrahedron: Asymmetry》2007,18(15):1809-1827
The dipolar cycloaddition of (Z)-N-benzyl-(3-O-benzyl-1,2-O-isopropylidene-α-d-ribofuranos-5-ylidene)amine N-oxide to methyl acrylate gives a 53:16:26:5 diastereomeric mixture of isoxazolidine derivatives. The dipolar cycloaddition of the xylo analogue to methyl acrylate is more diastereoselective, producing a 44:13:43 mixture of only three diastereomers. The ribo-configured adducts have been converted (4 steps only) into the new (2R,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aS)- and (2R,6S,7S,8R,8aS)-2,6,7,8-tetrahydroxyindolizidines. Similarly, the two xylo-configured major isoxazolidine derivatives were converted into the known derivatives (2R,6S,7R,8R,8aS)- and (2S,6S,7R,8R,8aR)-2,6,7,8-tetrahydroxyindolizidines. The six isomeric indolizidine derivatives obtained have been evaluated for their inhibiting activities towards 15 glycosidases. Only the (2R,6S,7S,8R,8aR)-configured isomer is a selective inhibitor of amyloglucosidases from Aspergillus niger (IC50 = 350 μM) and from Rhizopus mold (IC50 = 90 μM, Ki = 195 μM, non-competitive), the other indolizidines show very little inhibitory activity at 1 mM concentration.  相似文献   

2.
A series of rigid and chiral C2-symmetric 18-crown-6 type macrocycles (S,S)-4, (S,S)-5, (S,S)-6 and (R,R)-2 bearing diamide–ester groups were synthesized. The binding properties of these macrocycles were examined for α-(1-naphthyl)ethylammonium perchlorates salts by an 1H NMR titration method. Taking into account the host employed, important differences were observed in the Ka values of (R)- and (S)-enantiomers of guests for macrocycles (S,S)-4 and (S,S)-6, KS/KR = 3.6, and KS/KR = 0.1 (KR/KS = 10.3) ΔΔG = 3.19 and ΔΔG = ?5.77 kJ mol?1, respectively. The results indicated excellent enantioselectivity of macrocyclic (S,S)-6 towards the enantiomers of α-(1-naphthyl)ethylammonium perchlorate salts.  相似文献   

3.
The enantiomerically and diastereomerically pure dinitrogen-bridged complexes [{TpRu(L)}2(μ-N2)][PF6]2 (L = R,R- or S,S-1,2-bis(diphenylphosphinoamino)cyclohexane (R,R- or S,S-dppach)) were prepared by reaction of the corresponding chloro-complexes [TpRuCl(L)] with NaPF6 in dichloromethane under dinitrogen. The dinitrogen adducts react with neat methacrolein furnishing the labile complexes [TpRu(methacrolein)(L)][PF6] (L = R,R- or S,S-dppach). Both the dinitrogen and methacrolein derivatives are catalysts for the solvent-free regio- and enantioselective Diels–Alder reactions between methacrolein and cyclopentadiene or pentamethylcyclopentadiene, with moderate enantiomeric excesses ranging from 36 to ca. 70%. The metal complex can be easily recovered and re-utilised for further reactions. The dinitrogen complexes also catalyse the 1,3-dipolar cycloaddition reaction between methacrolein and benzylidenephenylamine N-oxide to yield 5-methyl-2-N-3-diphenyl-isoxazolidine-5-carbaldehyde with very high regioselectivity and 32% enantiomeric excess.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(9):1595-1602
The spontaneous resolution reaction of racemic trans-2,3-dihydro-2,3-dipyridyl-benzo[e]indole 1 with Cd(ClO4)2·6H2O in the presence of 2-butanol under solvothermal reaction conditions favors the formation of crystal 2 [P-Cd(R,R,-1)2(ClO4)2], while a similar reaction in the presence of ethanol only favors the formation of crystal 3 [M-Cd(S,S,-1)2(ClO4)2]. The crystal structural determination shows that both 2 and 3 crystallize in chiral enantiomorphous space groups (P6122 and P6522) and their structures are 1D infinite chain, and are just enantiomorphous pairs most like. The spontaneous resolution process displays estimated ee values of ca. +0.6 for 2-butanol and ca. −0.4 for ethanol. Enantiomerically pure (S,S)-trans-2,3-dihydro-2,3-dipyridyl-benzo[e]indole (S,S,-1) can be obtained through the decomposition of mechanically separated 3. Additionally (S,S,-1) also crystallizes in a chiral space group (P21). The CD (circular dichroism) spectra of both 2 and 3 in the solid state are also approximately enantiomorphous pairs. However, their fluorescent spectra in the solid state display a moderate difference in maximum emission peaks (Δλ = 19 nm). Crystal data for 2: C44H34Cl2N6O8Cd, M = 958.07, hexagonal, P6122, a = 10.5488(5), c = 68.256(4) Å, α = γ = 90°, β = 120°, V = 6577.8(6) Å3, Z = 6, Dc = 1.451 mg m−3, R1 = 0.0498, wR2 = 0.1124, μ = 0.679 mm−1, S = 0.623, Flack χ = −0.02(6). For space group P6522, R1 = 0.0670, wR2 = 0.1602, S = 0.725 with a Flack value of 1.03(7); Crystal data for 3, C44H34Cl2N6O8Cd, M = 958.07, hexagonal, P6522, a = 10.5446(3), c = 68.265(3) Å, V = 6573.3(4) Å3, Z = 6, Dc = 1.452 mg m−3, R1 = 0.0444,wR2 = 0.1002, μ = 0.679 mm−1, S = 0.558, Flack χ = 0.01(5). For space group P6122, R1 = 0.0501, wR2 = 0.1178, S = 0.599 with a Flack value of 1.00(5). The low Flack parameter indicates that the absolute configurations of 2 and 3 are stated; Crystal data for (S,S)-1, C22H17N2, M = 323.39, orthorhombic, P212121, a = 9.2598(7), b = 9.4617(8), c = 19.1452(16) Å, V = 1677.4(2) Å3, Z = 4, Dc = 1.281 mg m−3, R1 = 0.0417, wR2 = 0.1191, T = 293 K, μ = 0.077 mm−1, S = 0.862.  相似文献   

5.
Pyridine-based macrocycles were prepared by treating 2,6-bis[[2′6′-bis(bromomethyl)-4′-methylphenoxy]methyl]pyridine 3 with the appropriate chiral aminoalcohols. The enantiomeric recognition of these macrocycles bearing aminoalcohol subunits of the pyridinocrown type ligand was evaluated for chiral organic ammonium salts by UV titration. The important differences were observed in the Ka values of (R)-Am2 and (S)-Am2 for (S,S,S)-1, (S,S,S)-2 and (S,S,S)-3 hosts, KS/KR = 5.0, KS/KR = 2.4 and KS/KR = 5.0, respectively. There seems to be a general tendency for hosts to recognise (S)-enantiomers for both Am1 and Am2.  相似文献   

6.
Rhizopus arrhizus-mediated microbial reduction of various aryl alkyl ketones afforded chiral carbinols in good yields and high enantiomeric purity. The most striking feature was the formation of the anti-Prelog (R)-alcohols with the benzyl alkyl ketones, while the other ketones ArXCOR (X = (CH2)n, n = 0 or 2, OCH2 or SCH2 and R = Me/Et/n-Bu) furnished (S)-alcohols.  相似文献   

7.
《Tetrahedron: Asymmetry》2004,15(2):323-333
N-Benzyloxycarbonyl-2,5-dideoxy-2,5-imino-3,4-O-isopropylidene-l-ribose 12a has been converted into (1R,2S,6R,7S,7aS)-5 and (1R,2S,6S,7R,7aR)-1,2,6,7-tetrahydroxypyrrolidin-5-ones 6 and (1R,2S,6S,7S,7aS)-7 and (1R,2S,6R,7R,7aS)-1,2,6,7-tetrahydroxypyrrolizidines 8 following stereoselective paths. These new compounds have been assayed for their inhibitory activities towards 25 glycosidases. Pyrrolizidines 7 and 8 are moderate but selective inhibitors of amyloglucosidase from Rhizopus mold (7: IC50=130 μM, Ki=120 μM; 8: IC50=200 μM, Ki=180 μM, mixed type of inhibition).  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(16):2810-2815
Saccharomyces cerevisiae, strain DBM 2115, was successfully employed in the reduction of the separated Z- and E-isomers of ethyl 4-[(2-oxocyclohexyl)methyl]phenoxy-3-methyl-2-butenoates 1 and 2, in order to prepare the (1S,2S)- and (1R,2S)-enantiomers of the corresponding ethyl 4-[(2-hydroxycyclohexyl)methyl]phenoxy-3-methyl-2-butenoates 36. The products were obtained with the required absolute configuration: (1S,2S)-3 (ee = 98%; yield 48%), (1R,2S)-4 (ee = >99%; yield 45%), (1S,2S)-5 (ee = 98.5%; yield 47%), and (1R,2S)-6 (ee = >99%; chemical yield 44%).  相似文献   

9.
A novel co-crystal of trans-(R,R)-1,2-cyclohexanediol and (R,R)-tartaric acid (with 1:1 molar ratio, 1) has been found to be a key crystalline compound in the improved resolution of (±)-trans-1,2-cyclohexanediol by supercritical fluid extraction. The molecular and crystal structure of this co-crystal, which crystallizes in orthorhombic crystal system (space group P212121, a = 6.7033(13) Å, b = 7.2643(16), c = 24.863(5), Z = 4), has been solved by single crystal X-ray diffraction (R = 0.064). The packing arrangement consists of two dimensional layers of sandwich-like sheets, where the inner part is constructed by double layers of tartaric acids which hydrophilicity is “covered” on both upper and bottom side by cyclohexanediols with the hydrophobic cyclohexane rings pointing outward. Thus, a rather complex hydrogen bonding pattern is constructed. The relatively high melting point (133 °C) observed by both simultaneous TG/DTA and DSC, and the main features of FTIR-spectrum of 1 are explained by the increased stability of this crystal structure. DSC studies on binary mixtures of co-crystal 1 with (R,R)-1,2-cyclohexanediol or (R,R)-tartaric acid, revealed eutectic temperatures of Teu = 100 or 131 °C, respectively. Between (S,S)-1,2-cyclohexanediol and (R,R)-tartaric acid a eutectic temperature of Teu = 85 °C have also been observed. The phase relations have been confirmed by powder X-ray diffraction, as well.  相似文献   

10.
《Tetrahedron: Asymmetry》2017,28(4):545-549
(Z)-3-XCH2-4-(C6H5)-3-buten-2-one enones (X = SCN, N3, SO2Me, OC6H5) were synthesized and submitted to biotransformations using whole Saccharomyces cerevisiae cells. The enone (X = SCN) produced (R)-4-(phenyl)-3-methylbutan-2-one (R)-6 with 93% ee and enones (X = N3, SO2Me, OC6H5) yielded a mixture of (R)-6 and the corresponding CC bond reduction products. Biotransformation with enone (X = N3) mediated by Saccharomyces cerevisiae resulted in two products via two different routes: (i) the ketone (R)-4-azido-3-benzylbutan-2-one in 28% yield and with >99% ee by CC bond reduction; (ii) ketone (R)-6 in 51% yield and with 95% ee via cascade reactions beginning with azido group displacement by the formal hydride from flavin mononucleotide in an SN2′ type reaction followed by reduction of the newly formed CC bond.  相似文献   

11.
Enthalpies of mixing of (R)- and (S)-enantomers of liquid chiral compounds such as benzyl-(1-phenyl-ethyl)-amine (1), 1-phenylethylamine (2), 1-phenyl-ethanol (3), butyric acid oxiranylmethyl ester (4), 4-methyl-[1,3]dioxolan-2-one (5), 2-Chloromethyloxirane (6) and 3-hydroxyisobutyric acid methyl ester (7) have been measured over the whole range of mole fractions at 298.15 K, albeit very small values. Mixing of heterochiral liquids of R-1 + S-1, R-5 + S-5, and R-7 + S-7 realized enthalpic stabilization over the whole range of mole fractions, whereas that of R-2 + S-2, R-3 + S-3, R-4 + S-4, and R-6 + S-6 realized enthalpic destabilization over entire compositions. The extreme values of enthalpies of mixing and the intermolecular interaction obtained by the molecular mechanics calculations showed a linear correlation, except few the compounds measured.  相似文献   

12.
A protocol for Pd-catalyzed stereoselective co-polymerization of propene and carbon monoxide using chiral ligands, such as (2S,3S)-DIOP and (R)-P-Phos in [C4mim][PF6]/[C6mim][PF6] as an ionic liquid medium was developed. With (2S,3S)-DIOP as chiral ligand and [C4mim][PF6] as medium, the Pd-catalyzed co-polymerization of propene and CO gave almost completely regioregular polyketones, and the product polymer showed moderate stereoregularity (61% of ℓ-diads). The highest molar optical rotation = +15.9 and polydispersity = 1.2 were attained when (R)-P-Phos was used as the ligand and [C6mim]PF6 as the solvent. The co-polymer exhibited regioregularity of H–H/H–T/T–T (%) = 17:66:17.  相似文献   

13.
《Tetrahedron: Asymmetry》2006,17(3):416-427
In the presence of a rhodium catalyst (5 mol %) generated in situ from [Rh(cod)Cl]2 and (S,S′)-(R,R′)-C2-ferriphos-tolyl, the asymmetric ring-opening reaction of N-Boc-azabenzonorbornadienes with dibenzylamine proceeded with excellent enantioselectivity (up to >99% ee) to give the corresponding 1,2-diamine scaffolds in high yields. The sequential deprotection of the ring-opened products and treatment with tartaric acid gave the enantiomerically pure 1,2-diamine tartrate salts. These salts were used for the preparation of new chiral ligands such as the salen-type ligands and Trost-type ligands.  相似文献   

14.
《Tetrahedron: Asymmetry》2005,16(7):1355-1360
Racemic trans-4,5-dimethylhydrofuran-2(3H)-one was synthesised from 5-methyl-furan-2(3H)-one, (α-angelica lactone). The key reaction in the synthesis was the 1,4-conjugate addition of an organocuprate to 5-methylfuran-2(5H)-one (β-angelica lactone). Different types of organocuprates were tested with the highest anti:syn ratio of 99.4:0.6 being obtained by the use of a Gilman organocuprate reagent. The enantioselective acylation of racemic 3-methyl-pentan-1,4-diol, catalysed by a variety of lipases in organic media, was investigated. The highest enantioselectivity (E > 400) was obtained when Novozyme 435 was used as the catalyst at a water activity of aw  0. Thus, both enantiomers, (3S,4R)- and (3R,4S)-3-methyl-pentan-1,4-diol, were obtained in very high diastereomeric (>99% de) and enantiomeric purities (>99.8% and >97.4% ee, respectively).  相似文献   

15.
Alkyl and arylplatinum complexes with 1,5-cyclooctadiene ligand, [PtR2(cod)] (R = Me, Ph, C6H4-p-CF3, C6F5), react with secondary phosphines, PHR′2 (R′ = i-Bu, t-Bu, Ph), to afford the mononuclear platinum complexes, cis-[PtR2(PHR′2)2] (1a: R = Me, R′ = i-Bu; 1b: R = Me, R′ = t-Bu; 1c: R = Me, R′ = Ph; 2a: R = Ph, R′ = i-Bu; 2b: R = Ph, R′ = t-Bu; 2c: R = R′ = Ph; 3a: R = C6H4-p-CF3, R′ = i-Bu; 3b: R = C6H4-p-CF3, R′ = t-Bu; 3c: R = C6H4-p-CF3, R′ = Ph; 4a: R = C6F5, R′ = i-Bu; 4c: R = C6F5, R′ = Ph) in 81–98% yields. Molecular structures of the complexes except for 1a, 1c and 2a were determined by X-ray crystallography. Complex 1b has a square-planar structure with Pt–C(methyl) bonds of 2.083(8) and 2.109(8) Å, while the Pt–C(aryl) bonds of 2bc, 3ac, 4a and 4c (2.055(1)–2.073(8) Å) are shorter than them. Thermal decomposition of 1b, 2ac, and 3ac releases methane, biphenyl or 4,4′-bis(trifluoromethyl)biphenyl as the organic products, which are characterized by NMR spectroscopy. The solid product of the thermal reactions of 2b and 2c were characterized as the metallopolymers formulated as [Pt(PR′2)2]n (5b: R′ = tBu; 5c: R′ = Ph), based on the solid-state NMR and elemental analyses.  相似文献   

16.
《Tetrahedron: Asymmetry》2005,16(9):1577-1581
The stereocontrolled synthesis of functionalized organosulfur compounds of a general formula: Bn2NCH(CH3)CH(OH)CH2SX [where: X = SO3Na or SP(S)(OR)2] was achieved by a regioselective opening of enantiomerically >98% pure (2S,3R)- and (2S,3S)-N,N-dibenzyl-2-hydroxy-3-methylazetidinium bromides and/or (1R)-[1′(S)-dibenzylamino)ethyl]oxiranes with thiosulfate and dithiophosphate anions. The attack of both nucleophiles was directed exclusively at the less substituted carbon atom of the heterocyclic ring.  相似文献   

17.
Cryogenic heat capacities determined by equilibrium adiabatic calorimetry from T = (6 to 350) K on Li, Na, and K disilicates in both crystalline and vitreous phases are adjusted to end member composition and the vitreous/crystal difference ascertained. The thermophysical properties of these and related phases are estimated, compared, and updated. The values at T = 298.15 K of {S(T)  S(0)}/R for stoichiometric compositions of alkali disilicate (M2O · 2SiO2): vitreous, crystal: Li, 16.30, 14.65; Na, 20.67, 19.47; and K, 23.26, 23.00. Entropy differences confirm greater disorder in the vitreous compounds compared with the crystalline compounds. The entropy data also show that disorder increases with decreasing atomic mass of the alkali ion.  相似文献   

18.
《Tetrahedron: Asymmetry》2007,18(18):2125-2128
Lipase-catalyzed esterification of (±)-methyl 1′-(1-hydroxyethyl)ferrocene-1-carboxylate 4 afforded its (R)-acetate (−)-5 (ee = 99%) and (S)-(+)-4 (ee = 90%). Stereoretentive azidation/amination/acetylation of (R)-(−)-5 gave (R)-(+)-methyl 1′-(1-acetamidoethyl)ferrocene-1-carboxylate (R)-3 (ee = 98%). In a similar manner (S)-(+)-4 was converted into (S)-(−)-3 (ee = 84%). Both enantiomers of 3 were obtained in high chemical yields without a loss of enantiomeric purity. The title compounds can be coupled with natural amino acids and peptides on both C- and N-termini.  相似文献   

19.
《Tetrahedron: Asymmetry》2014,25(3):268-277
The enantioselective synthesis of fluorinated spirocyclic σ1 ligands involved three key steps: (1) the Sharpless asymmetric dihydroxylation of 2-bromostyrene 5 provided enantiomerically pure diols (R)-6 and (S)-6 establishing the stereogenic center; (2) the intramolecular opening of the oxirane ring of (R)-11 and (S)-11, which occurred with excellent regioselectivity and complete inversion of configuration giving access to enantiomerically pure alcohols (S)-7a and (R)-7a; (3) the treatment of alcohols (S)-7b and (R)-7b with DAST, which led to the fluoromethyl derivatives (S)-1 and (R)-1 without racemization. X-ray crystal structure analysis of the tosylate (R)-13 confirmed the absolute configuration of the spirocyclic compounds as well as the enantioselectivity during the Sharpless asymmetric dihydroxylation of 5. The (S)-configured fluoromethyl derivative (S)-1 revealed a high σ1 affinity (Ki = 1.8 nM), high eudismic ratio (factor 8) and high selectivity over the σ2 subtype (667-fold).  相似文献   

20.
Variable-temperature powder neutron diffraction data reveal that Co3Sn2S2 crystallizes in the shandite structure (space group R3¯m, a = 5.36855(3) Å, c = 13.1903(1) Å at 300 K). The structural relationship between Co3Sn2S2 and the intermetallic compound CoSn, both of which contain Kagomé nets of cobalt atoms, is discussed. Resistivity and Seebeck coefficient measurements for Co3Sn2S2 are consistent with metallic behaviour. Magnetic susceptibility measurements indicate that Co3Sn2S2 orders ferromagnetically at 180(10) K, with a saturation moment of 0.29 μB per cobalt atom at 5 K. The onset of magnetic ordering is accompanied by marked anomalies in the electrical transport properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号