首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Invariant manifold play an important role in the qualitative analysis of dynamical systems, such as in studying homoclinic orbit and heteroclinic orbit. This paper focuses on stable and unstable manifolds of hyperbolic singular points. For a type of n-dimensional quadratic system, such as Lorenz system, Chen system, Rossler system if n = 3, we provide the series expression of manifolds near the hyperbolic singular point, and proved its convergence using the proof of the formal power series. The expressions can be used to investigate the heteroclinic orbits and homoclinic orbits of hyperbolic singular points.  相似文献   

2.
In order to investigate bounded traveling waves of the Burgers-Huxley equation, bifurcations of codimension 1 and 2 are discussed for its traveling wave system. By reduction to center manifolds and normal forms we give conditions for the appearance of homoclinic solutions, heteroclinic solutions and periodic solutions, which correspondingly give conditions of existence for solitary waves, kink waves and periodic waves, three basic types of bounded traveling waves. Furthermore, their evolutions are discussed to investigate the existence of other types of bounded traveling waves, such as the oscillatory traveling waves corresponding to connections between an equilibrium and a periodic orbit and the oscillatory kink waves corresponding to connections of saddle-focus.  相似文献   

3.
本文对Nagumo方程的行波系统进行了定性分析,该系统存在一端连接鞍点的有界异宿轨,进而选择奇点为鞍点的平面线性自治系统,利用该平面自治系统轨线向径的斜率,根据齐次平衡原则,构造出了Nagumo方程行波系统的行波解.其次Nagumo方程的行波系统还存在着对应中心周围闭轨的周期解,因而提出新的CPP解法,求出了对应的周期解.  相似文献   

4.
Motivated by applications to singular perturbations, the paper examines convergence rates of distributions induced by solutions of ordinary differential equations in the plane. The solutions may converge either to a limit cycle or to a heteroclinic cycle. The limit distributions form invariant measures on the limit set. The customary gauges of topological distances may not apply to such cases and do not suit the applications. The paper employs the Prohorov distance between probability measures. It is found that the rate of convergence to a limit cycle and to an equilibrium are different than the rate in the case of heteroclinic cycle; the latter may exhibit two paces, depending on a relation among the eigenvalues of the hyperbolic equilibria. The limit invariant measures are also exhibited. The motivation is stemmed from singularly perturbed systems with non-stationary fast dynamics and averaging. The resulting rates of convergence are displayed for a planar singularly perturbed system, and for a general system of a slow flow coupled with a planar fast dynamics.  相似文献   

5.
The dynamics and bifurcations of traveling wave solutions are studied for three nonlinear wave equations. A new phenomenon, such as a composed orbit, which consists of two or three heteroclinic orbits, may correspond to a solitary wave solution, a periodic wave solution or a peakon solution, is found for the equations. Some previous results are extended.  相似文献   

6.
The solutions to the Riemann problem for a nonsymmetric system of Keyfitz-Kranzer type are constructed explicitly when the initial data are located in the quarter phase plane. In particular, some singular hyperbolic waves are discovered when one of the Riemann initial data is located on the boundary of the quarter phase plane, such as the delta shock wave and some composite waves in which the contact discontinuity coincides with the shock wave or the wave back of rarefaction wave. The double Riemann problem for this system with three piecewise constant states is also considered when the delta shock wave is involved. Furthermore, the global solutions to the double Riemann problem are constructed through studying the interaction between the delta shock wave and the other elementary waves by using the method of characteristics. Some interesting nonlinear phenomena are discovered during the process of constructing solutions; for example, a delta shock wave is decomposed into a delta contact discontinuity and a shock wave.  相似文献   

7.
In this paper, the effects of quadratic singular curves in integrable wave equations are studied by using the bifurcation theory of dynamical system. Some new singular solitary waves (pseudo‐cuspons) and periodic waves are found more weak than regular singular traveling waves such as peaked soliton (peakon), cusp soliton (cuspon), cusp periodic wave, etc. We show that while the first‐order derivatives of the new singular solitary wave and periodic waves exist, their second‐order derivatives are discontinuous at finite number of points for the solitary waves or at infinitely countable points for the periodic wave. Moreover, an intrinsic connection is constructed between the singular traveling waves and quadratic singular curves in the phase plane of traveling wave system. The new singular periodic waves, pseudo‐cuspons, and compactons emerge if corresponding periodic orbits or homoclinic orbits are tangent to a hyperbola, ellipse, and parabola. In particular, pseudo‐cuspon is proposed for the first time. Finally, we study the qualitative behavior of the new singular solitary wave and periodic wave solutions through theoretical analysis and numerical simulation.  相似文献   

8.
This article concerns arbitrary finite heteroclinic networks in any phase space dimension whose vertices can be a random mixture of equilibria and periodic orbits. In addition, tangencies in the intersection of un/stable manifolds are allowed. The main result is a reduction to algebraic equations of the problem to find all solutions that are close to the heteroclinic network for all time, and their parameter values. A leading order expansion is given in terms of the time spent near vertices and, if applicable, the location on the non-trivial tangent directions. The only difference between a periodic orbit and an equilibrium is that the time parameter is discrete for a periodic orbit. The essential assumptions are hyperbolicity of the vertices and transversality of parameters. Using the result, conjugacy to shift dynamics for a generic homoclinic orbit to a periodic orbit is proven. Finally, equilibrium-to-periodic orbit heteroclinic cycles of various types are considered.  相似文献   

9.
The effects of parabola singular curves in the integrable nonlinear wave equation are studied by using the bifurcation theory of dynamical system. We find new singular periodic waves for a nonlinear wave equation from short capillary-gravity waves. The new periodic waves possess weaker singularity than the periodic peakon. It is shown that the second derivatives of the new singular periodic wave solutions do not exist in countable number of points but the first derivatives exist. We show that there exist close connection between the new singular periodic waves and parabola singular curve in phase plane of traveling wave system for the first time.  相似文献   

10.
The present paper revisits a three dimensional (3D) autonomous chaotic system with four-wing occurring in the known literature [Nonlinear Dyn (2010) 60(3): 443--457] with the entitle ``A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems'' and is devoted to discussing its complex dynamical behaviors, mainly for its non-isolated equilibria, Hopf bifurcation, heteroclinic orbit and singularly degenerate heteroclinic cycles, etc. Firstly, the detailed distribution of its equilibrium points is formulated. Secondly, the local behaviors of its equilibria, especially the Hopf bifurcation, are studied. Thirdly, its such singular orbits as the heteroclinic orbits and singularly degenerate heteroclinic cycles are exploited. In particular, numerical simulations demonstrate that this system not only has four heteroclinic orbits to the origin and other four symmetry equilibria, but also two different kinds of infinitely many singularly degenerate heteroclinic cycles with the corresponding two-wing and four-wing chaotic attractors nearby.  相似文献   

11.
For the system of Lorenz equations in the parameter space we construct a complete bifurcation diagram of all homoclinic and heteroclinic separatrix contours of singular points that exist in the system. These constructs include the existence surface of a homoclinic butterfly, the existence half-surface of homoclinic loops of saddle-focus separatrices, and the existence curve of a heteroclinic separatrix contour joining a saddle-node with two saddle-foci.  相似文献   

12.
In this paper we study the exponentially small splitting of a heteroclinic connection in a one-parameter family of analytic vector fields in This family arises from the conservative analytic unfoldings of the so-called Hopf zero singularity (central singularity). The family under consideration can be seen as a small perturbation of an integrable vector field having a heteroclinic orbit between two critical points along the z axis. We prove that, generically, when the whole family is considered, this heteroclinic connection is destroyed. Moreover, we give an asymptotic formula of the distance between the stable and unstable manifolds when they meet the plane z = 0. This distance is exponentially small with respect to the unfolding parameter, and the main term is a suitable version of the Melnikov integral given in terms of the Borel transform of some function depending on the higher-order terms of the family. The results are obtained in a perturbative setting that does not cover the generic unfoldings of the Hopf singularity, which can be obtained as a singular limit of the considered family. To deal with this singular case, other techniques are needed. The reason to study the breakdown of the heteroclinic orbit is that it can lead to the birth of some homoclinic connection to one of the critical points in the unfoldings of the Hopf-zero singularity, producing what is known as a Shilnikov bifurcation.  相似文献   

13.
The authors study the existence of wavefront-type travellingwave solutions in the Fickett-Majda model of viscous reactiveflow when the chemistry is modelled by a reversible chemicalreaction. The problem is reduced to proving the existence ofa heteroclinic orbit, in a two-dimensional phase space, connectingtwo critical points that represent the equilibrium states atplus and minus infinity. Reactions in which the forward reactioncan be either endothermic or exothermic are examined, and itis shown that compression waves must be accompanied by a shiftin the equilibrium composition in the endothermic direction,while rarefac-tions are accompanied by a shift in the exothermicdirection. Although compression waves occur on a larger parameterdomain, there are regimes where the rarefactions appear. Finally,the stability of an equilibrium state under small perturbationsis discussed.  相似文献   

14.
In this paper, we consider a generalized nonlinear forth-order dispersive-dissipative equation with a nonlocal strong generic delay kernel, which describes wave propagation in generalized nonlinear dispersive, dissipation and quadratic diffusion media. By using geometric singular perturbation theory and Fredholm alternative theory, we get a locally invariant manifold and use fast-slow system to construct the desire heteroclinic orbit. Furthermore we construct a traveling wave solution for the nonlinear equation. Some known results in the literature are generalized.  相似文献   

15.
In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa–Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon and cuspon solutions. One of the considered GCH equations supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. The second equation does not support singular traveling waves and the last one supports four-segmented, non-smooth M-wave solutions.Moreover, smooth traveling waves of the three GCH equations are considered. Here, we use a recent technique to derive convergent multi-infinite series solutions for the homoclinic orbits of their traveling-wave equations, corresponding to pulse (kink or shock) solutions respectively of the original PDEs. We perform many numerical tests in different parameter regime to pinpoint real saddle equilibrium points of the corresponding GCH equations, as well as ensure simultaneous convergence and continuity of the multi-infinite series solutions for the homoclinic orbits anchored by these saddle points. Unlike the majority of unaccelerated convergent series, high accuracy is attained with relatively few terms. We also show the traveling wave nature of these pulse and front solutions to the GCH NLPDEs.  相似文献   

16.
We analyze homoclinic orbits near codimension-1 and -2 heteroclinic cycles between an equilibrium and a periodic orbit for ordinary differential equations in three or higher dimensions. The main motivation for this study is a self-organized periodic replication process of travelling pulses which has been observed in reaction-diffusion equations. We establish conditions for existence and uniqueness of countably infinite families of curve segments of 1-homoclinic orbits which accumulate at codimension-1 or -2 heteroclinic cycles. The main result shows the bifurcation of a number of curves of 1-homoclinic orbits from such codimension-2 heteroclinic cycles which depends on a winding number of the transverse set of heteroclinic points. In addition, a leading order expansion of the associated curves in parameter space is derived. Its coefficients are periodic with one frequency from the imaginary part of the leading stable Floquet exponents of the periodic orbit and one from the winding number.  相似文献   

17.
Entire solutions for monostable reaction-diffusion equations with nonlocal delay in one-dimensional spatial domain are considered. A comparison argument is employed to prove the existence of entire solutions which behave as two traveling wave solutions coming from both directions. Some new entire solutions are also constructed by mixing traveling wave solutions with heteroclinic orbits of the spatially averaged ordinary differential equations, and the existence of such a heteroclinic orbit is established using the monotone dynamical systems theory. Key techniques include the characterization of the asymptotic behaviors of solutions as t→−∞ in term of appropriate subsolutions and supersolutions. Two models of reaction-diffusion equations with nonlocal delay arising from mathematical biology are given to illustrate main results.  相似文献   

18.
The structure of infinitesimal periodic motions in the interior of a rotating compressible fluid which has been stratified using salt is analyzed taking account of dissipation effects. In the general case, the system of fundamental equations of motion belongs to the class of singularly perturbed equations, the solutions of that consist of functions which are regular and singular with respect to the dissipative coefficients that describe both propagating hybrid waves as well as several types of accompanying singular components including boundary layers. The thicknesses of the singular components are determined by the kinematic viscosity, the diffusion coefficient of the salt and the characteristic frequencies of the problem. In the model of a barotropic or homogeneous fluid, the singular components of spatial periodic flows combine together, which is indicative of degeneracy of the system of equations. Taking account of the full set of components, which are regular and singular with respect to the dissipative characteristics, enables one to construct exact solutions of problems of the generation and non-linear interaction of waves.  相似文献   

19.
Long wave propagation in a two‐layer fluid with variable depth is studied for specific bottom configurations, which allow waves to propagate over large distances. Such configurations are found within the linear shallow‐water theory and determined by a family of solutions of the second‐order ordinary differential equation (ODE) with three arbitrary constants. These solutions can be used to approximate the true bottom bathymetry. All such solutions represent smooth bottom profiles between two different singular points. The first singular point corresponds to the point where the two‐layer flow transforms into a uniform one. In the vicinity of this point nonlinear shallow‐water theory is used and the wave breaking criterion, which corresponds to the gradient catastrophe is found. The second bifurcation point corresponds to an infinite increase in water depth, which contradicts the shallow‐water assumption. This point is eliminated by matching the “nonreflecting” bottom profile with a flat bottom. The wave transformation at the matching point is described by the second‐order Fredholm equation and its approximated solution is then obtained. The results extend the theory of internal waves in inhomogeneous stratified fluids actively developed by Prof. Roger Grimshaw, to the new solutions types.  相似文献   

20.
It is proved that an inhomogeneous medium whose boundary contains a weakly singular point of arbitrary order scatters every incoming wave. Similarly, a compactly supported source term with weakly singular points on the boundary always radiates acoustic waves. These results imply the absence of non-scattering energies and non-radiating sources in a domain whose boundary is piecewise analytic but not infinitely smooth. Local uniqueness results with a single far-field pattern are obtained for inverse source and inverse medium scattering problems. Our arguments provide a rather weak condition on scattering interfaces and refractive index functions to guarantee the scattering phenomena that the scattered fields cannot vanish identically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号