首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical wave-absorption filter has been developed for an open boundary condition in the analysis of nonlinear and irregular wave evolution. The filter is composed of a simulated sponge layer and Sommerfeld's radiation condition at the outer edge of the layer. The wave-absorption characteristics of the filter have been investigated by applying the linear potential theory and a two-dimensional nonlinear boundary element model. In both cases, the filter is found to he applicable for a wide range of wave parameters. In order to realize an idealized “numerical wave tank”, the present model also incorporates a nonreflective wave generator in the computational domain composed of a series of vertically aligned point sources. Numerous numerical experiments demonstrate that the present approach is effective in generating an arbitrary wave profile without reflection not only at the open boundaries but also at the wave generator.  相似文献   

2.
This research intends to provide a detailed data basis for numerical modelling of impulse waves. Three tests are described involving a rectangular wave channel, in which a trapezoidal ‘breakwater’ was inserted to study wave run-over. In addition, a reference test is also described, in which the breakwater was removed. Two-dimensional impulse waves were generated by means of subaerial granular slides accelerated by a pneumatic landslide generator into the water body. Wave propagation and run-over over the artificial breakwater are documented by a set of high-quality photographs. Water surface profiles were recorded using capacitance wave gages upstream and downstream of the breakwater, and velocity vector fields were determined for the run-over zone by means of Particle Image Velocimetry. The measurements are compared with predictive formulae for wave features and wave non-linearity. The present data set involves both simple channel topography and wave features to allow for numerical simulations under basic laboratory conditions.  相似文献   

3.
The trend of using floating structures with cage aquaculture is becoming more popular in the open sea. The purpose of this paper is to investigate the dynamic properties of a dual pontoon floating structure (DPFS) when attached to a fish net by using physical and numerical models. A two-dimensional (2-D) fully nonlinear numerical wave tank (NWT), based on the boundary element method (BEM), is developed to calculate the wave forces on the DPFS. The wave forces on a fish net system are then evaluated using a modified Morison equation. The comparisons of dynamic behaviors between numerical simulations and experimental measurements on the DPFS show good agreement. Results also display that a fish net system causes the resonant response of body motions and mooring forces to be slightly lower due to the net's damping effect. Finally, for designing the rearing space of cage aquaculture, the influences which net depth and net width have on the DPFS dynamic responses are also presented in this paper.  相似文献   

4.
Time domain simulation of the interaction between offshore structures and irregular waves in shallow water becomes a focus due to significant increase of liquefied natural gas (LNG) terminals. To obtain the time series of irregular waves in shallow water, a numerical wave tank is developed by using the meshless method for simulation of 2D nonlinear irregular waves propagating from deep water to shallow water. Using the fundamental solution of Laplace equation as the radial basis function (RBF) and locating the source points outside the computational domain, the problem of water wave propagation is solved by collocation of boundary points. In order to improve the computation stability, both the incident wave elevation and velocity potential are applied to the wave generation. A sponge damping layer combined with the Sommerfeld radiation condition is used on the radiation boundary. The present model is applied to simulate the propagation of regular and irregular waves. The numerical results are validated by analytical solutions and experimental data and good agreements are observed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The process of focusing of a shock wave in a rarefied noble gas is investigated by a numerical solution of the corresponding two dimensional initial–boundary value problem for the Boltzmann equation. The numerical method is based on the splitting algorithm in which the collision integral is computed by a Monte Carlo quadrature, and the free flow equation is solved by a finite volume method. We analyse the development of the shock wave which reflects from a suitably shaped reflector, and we study influence of various factors, involved in the mathematical model of the problem, on the process of focusing. In particular, we investigate the pressure amplification factor and its dependence on the strength of the shock and on the accommodation coefficient appearing in the Maxwell boundary condition modelling the gas-surface interaction. Moreover, we study the dependence of the shock focusing phenomenon on the shape of the reflector, and on the Mach number of the incoming shock. Received 25 May 1998 / Accepted 4 January 2000  相似文献   

6.
Since, nowadays, the NVH performance of a vehicle is one of the most important priorities for the market, the noise radiating from disc brakes is considered a source of considerable discomfort and customer dissatisfaction. Squeal is an example of noise, caused by vibrations induced by friction forces, in which the vibration modes of the brake disc are coupled to those of the friction pads or of the caliper. In this work a case study, in which the squeal phenomenon was detected after changing the supplier of the disc pads, is presented. A test bench was purposely developed to investigate the squeal phenomenon; tests at different rotating speeds and pressures in the brake circuit were carried out employing different friction pads. The experimental apparatus appeared capable of reproducing the phenomenon observed in real practice and to investigate the effect of operating parameters and different components on the onset of instability. Friction tests and geometric analysis of the friction pads were also carried out to complete the investigation. At the same time, a finite element (FE) complex eigenvalue parametric analysis was performed on the brake assembly. The different propensity of the pads to squeal was attributed to differences in their geometry and in their friction coefficients. The FE analysis, confirmed the experimental observations and indicated possible design improvements to increase the stability of the system.  相似文献   

7.
A two-dimensional(2D) numerical model is developed for the wave simulation and propagation in a wave flume.The fluid flow is assumed to be viscous and incompressible,and the Navier-Stokes and continuity equations are used as the governing equations.The standard k-ε model is used to model the turbulent flow.The NavierStokes equations are discretized using the staggered grid finite difference method and solved by the simplified marker and cell(SMAC) method.Waves are generated and propagated using a piston type wave maker.An open boundary condition is used at the end of the numerical flume.Some standard tests,such as the lid-driven cavity,the constant unidirectional velocity field,the shearing flow,and the dam-break on the dry bed,are performed to valid the model.To demonstrate the capability and accuracy of the present method,the results of generated waves are compared with available wave theories.Finally,the clustering technique(CT) is used for the mesh generation,and the best condition is suggested.  相似文献   

8.
In the current work, we use the Constant Volume model and the numerical method, Regularized Smoothed Particle Hydrodynamics (RSPH) to study propagation and reflection of blast waves from detonations of the high explosives C-4 and TNT. The results from simulations of free-field TNT explosions are compared to previously published data, and good agreement is found. Measurements from height of burst tests performed by the Norwegian Defence Estates Agency are used to compare against numerical simulations. The results for shock time of arrival and the pressure levels are well represented by the numerical results. The results are also found to be in good agreement with results from a commercially available code. The effect of allowing different ratios of specific heat capacities in the explosive products are studied. We also evaluate the effect of changing the charge shape and height of burst on the triple point trajectory.   相似文献   

9.
In this paper, a fluid–wall interaction model, called the elastic tube model, is introduced to investigate wave propagation in an elastic tube and the effects of different parameters. The unsteady flow was assumed to be laminar, Newtonian and incompressible, and the vessel wall to be linear-elastic, isotropic and incompressible. A fluid–wall interaction scheme is constructed using a finite element method. The results demonstrate that the elastic tube plays an important role in wave propagation. It is shown that there is a time delay between the velocity waveforms at two different locations and that the peak velocity increases while the low velocity decreases in the elastic tube model, contrary to the rigid tube model where velocity waveforms overlap each other. Compared with the elastic tube model, the increase of the wall thickness makes wave propagation faster and the time delay cannot be observed clearly, however, the velocity amplitude is reduced slightly due to the decrease of the internal radius. The fluid–wall interaction model simulates wave propagation successfully and can be extended to study other mechanical properties considering complicated geometrical and material factors.  相似文献   

10.
Detailed finite element implementation is presented for a recently developed technique (He et al., 2012) to characterize nonlinear shear stress–strain response and interlaminar shear strength based on short-beam shear test of unidirectional polymeric composites. The material characterization couples iterative three-dimensional finite element modeling for stress calculation with digital image correlation for strain evaluation. Extensive numerical experiments were conducted to examine the dependence of the measured shear behavior on specimen and test configurations. The numerical results demonstrate that consistent results can be achieved for specimens with various span-to-thickness ratios, supporting the accurate material properties for the carbon/epoxy composite under study.  相似文献   

11.
An explicit numerical implementation is described, for a constitutive model of glassy polymers, previously proposed and validated. Then it is exploited within a Finite Element continuum model, to simulate spontaneous strain localization (necking) occurring during extension of a prismatic bar of a typical glassy polymer. Material parameters for atactic polystyrene are employed. The material model is physically based and highly non-linearly viscoelastic. Three of its principal features are critical in simulations of strain localization: rate-dependence of plastic flow stress; strain-induced structural rejuvenation, represented by increase of Tool’s fictive temperature and leading to pronounced post-yield strain softening; and molecular alignment during extension, giving rise to strain-hardening. In all simulations there is a peak in nominal stress, satisfying the condition for localization to occur. Nevertheless, the simulations show that the process of strain localization varies considerably, depending on details of the extension sequence and on assumed values for certain material parameters. A characteristic feature observed is that strain localization in such a material occurs in two stages. There is an initial spurt associated with strain-softening, followed by a slower growth of localization that eventually subsides, ultimately giving way to uniform extension of the neck. But the details of evolution of the strain distribution vary greatly. The rapidity and severity of localization are increased by decreased temperature, increased strain-rate or greater structural rejuvenation. A simple one-dimensional stability analysis is successful in explaining the results.  相似文献   

12.
13.
This paper aims to study a novel drop-on-demand droplet generation mechanism in which the oscillation and deformation of a non-equilibrium bubble in close proximity to a free surface induce an axisymmetric liquid spike on the free surface. The evolution of the liquid spike and its deformation due to the effect of surface tension force lead to the formation of a droplet. The free surface can be accorded by either a circular hole on a horizontal flat plate or by the top opening/nozzle of a vertical cylinder. A high-speed camera capable of obtaining images at a frame rate of 15,000 fps is utilized to observe the droplet formation process. Numerical simulations corresponding to the experiments are performed using the boundary integral spatial solution coupled with the time integration, i.e., a mixed Eulerian–Lagrangian method. In the experiments the bubble is generated using a very low voltage (only 55 V) in contrast to the relatively much higher voltages usually employed in reported works. This is very attractive from a safety viewpoint and accords great simplification of the setup. A comparison is made between the numerical and experimental results. A reasonable agreement has been found. The influences of the main design parameters, namely, the bubble-free surface distance and the dimension of the hole/nozzle on the bubble dynamics and on the droplet formation process are discussed and the conditions of the bubble dynamics under which a satellite-free droplet can be generated are sought. Furthermore, the effects of different geometries, namely, the horizontal flat plate and the vertical cylinder on the bubble dynamics and on the droplet features are examined. One important feature of the proposed actuation mechanism is the capability of producing droplets much smaller than the nozzle size. The possible applications of this mechanism are those where the accurate direction of the ejected droplet is of great importance such as inkjet printing.   相似文献   

14.
Saito  T.  Voinovich  P.  Zhao  W.  Shibasaki  K.  Shibasaki  S.  Takayama  K. 《Shock Waves》2003,13(4):253-259
A new compact pressure wave refrigerator has been designed and manufactured at the Shock Wave Research Center, Institute of Fluid Science, Tohoku University. The performance of this device was investigated for combinations of major operational parameters, such as the rotational speed of gas distributor, the length of expansion tubes, the input gas pressure. The maximum temperature decrease of 20 K has been measured. Some theoretical consideration to the efficiency of the pressure wave refrigerator and two-dimensional numerical simulations were carried out in order to understand the wave interactions that take place inside the device.Received: 26 May 2003, Accepted: 12 August 2003, Published online: 14 October 2003 Correspondence to: T. Saito  相似文献   

15.
Multidimensional modelling and experimental measurements are performed to study the early stages of diesel combustion. Numerical simulation is realised by means of a customised version of the KIVA 3 code, including the Shell model for auto-ignition. Experimentally, a spectroscopic analysis of the burning mixture is carried out under real operating conditions on a diesel engine equipped with an optically accessible combustion chamber. Changing the fuel injection law makes for auto-ignition to occur in environments characterised by different values of mixture pressure and temperature. Dependence of the ignition delay time upon this last variable is shown to follow a law with a negative temperature coefficient in the middle range of values. By means of natural chemiluminescence spectra, OH, CH and HCO radicals are detected as products of the reactions of thermal decomposition of the hydrocarbon molecules preceding auto-ignition. Distribution of the radicals emission intensity within the combustion chamber permits the localisation of auto-ignition sites. These are found to be in good agreement with the points of high energetic chemical activity, individuated numerically, under all the considered operating conditions. Experimentally identified radicals and fictitious species entering the reduced kinetic scheme employed within the numerical simulation are shown to exhibit an analogous behaviour regarding the trend with respect to time of the total amount of concentration, and, in a spatial sense, their distribution within the combustion chamber at the time of auto-ignition.  相似文献   

16.
The various oblique shock wave reflection patterns generated by a moving incident shock on a planar wedge using an ideal quantum gas model are numerically studied using a novel high resolution quantum kinetic flux splitting scheme. With different incident shock Mach numbers and wedge angles as flow parameters, four different types of reflection patterns, namely, the regular reflection, simple Mach reflection, complex Mach reflection and the double Mach reflection as in the classical gas can be classified and observed. Both Bose–Einstein and Fermi–Dirac gases are considered.   相似文献   

17.
The main difficulty for the numerical calculation of the wave running up a beach is the treatment of its moving water boundary. In this paper a scheme of turning the free boundary problem into a fixed boundary problem is designed. The calculated run-up height is consistent with the experiments. Some interesting wave phenomena are also found.  相似文献   

18.
A numerical study is presented on the response of a weakly shock compressed liquid column that contains reactive gas bubbles. Both the liquid and gas are considered compressible. Compressibility of the liquid allows calculation of shock and rarefaction waves in the pure liquid as well as in the gas/liquid mixture. A microscopic model for local bubble collapse is coupled with a macroscopic model of wave propagation through the gas/liquid mixture. In the particular cases presented here, the characteristic times of propagation of the shock wave and bubble collapse are of the same order of magnitude. Consequently, the coupling between various phenomena is very strong. The present model based on fundamental principles of two-phase fluid mechanics takes into account the coupling of localized bubble oscillations. This model is composed of a microscopic one in the scale of a bubble size, and a macroscopic one which is based on the mixture theory. The liquid under study is water, and the gas is a reactive mixture of argon, hydrogen and oxygen. Received 18 December 1995 / Accepted 2 June 1996  相似文献   

19.
A finite difference scheme using a modified marker‐and‐cell (MAC) method is applied to investigate the characteristics of non‐linear wave motions and their interactions with a stationary three‐dimensional body inside a numerical wave tank (NWT). The Navier–Stokes (NS) equation is solved for two fluid layers, and the boundary values are updated at each time step by a finite difference time marching scheme in the frame of a rectangular co‐ordinate system. The viscous stresses and surface tension are neglected in the dynamic free‐surface condition, and the fully non‐linear kinematic free‐surface condition is satisfied by the density function method developed for two fluid layers. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling flexible flap wavemaker motions, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the tank. The present NS–MAC NWT simulations for a vertical truncated circular cylinder inside a rectangular wave tank are compared with the experimental results of Mercier and Niedzwecki, an independently developed potential‐based fully non‐linear NWT, and the second‐order diffraction computation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号