共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we investigate the catalytic properties of silver nanoparticles supported on silica spheres. The technique to support silver particles on silica spheres effectively avoids flocculation of nanosized colloidal metal particles during a catalytic process in the solution, which allows one to carry out the successful catalytic reduction of dyes. The effects of electrolytes and surfactants on the catalytic properties of silver particles on silica have been investigated. It is found that the presence of surfactants depresses the catalytic activity of the silver particles to some extent by inhibiting the adsorption of reactants onto the surface of the particles. Electrolytes either increase the migration rate of reactants in the solution resulting in an increase in the catalytic reaction rate or inhibit the adsorption of reactants onto the surface of the silver particles leading to a loss in the activity of the metal particles. 相似文献
2.
G. V. Mamontov T. I. Izaak O. V. Magaev A. S. Knyazev O. V. Vodyankina 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2011,85(9):1540-1545
Ag/SiO2 and Ag3PO4/SiO2 systems supported on silica aerogel were investigated using temperature-programmed reduction (TPR), UV-visible diffuse reflectance
spectroscopy (UV-vis DRS), and infrared spectroscopy. The formation of highly dispersed silver particles, uniformly distributed
along the surface and stabilized with silanol groups, was observed for Ag/SiO2 system. Phosphate and silanol groups produce two states of silver localization in phosphate-containing system. The addition
of phosphate onto the silica surface leads to the reversible oxidation/reduction of silver in the temperature range of 100–300°C
with transitions of silver (particles 10–30 nm in size) to charged states (ions, clusters stabilized by phosphate groups).
This reversible behavior of silver is stable, and the amount of silver involved in these processes remained constant (∼50%)
for the series of consistent cyclic oxidation/reduction treatments. 相似文献
3.
A facile method was developed to load a large amount of silver nanoparticles into a biodegradable and biocompatible cellulose acetate (CA) nanofibrillar aerogel in a controlled manner. The micro-sized CA fibrils were separated into nano-sized fibrils by salt-assisted chemical treatment in a water-acetone co-solvent to give a nanofibrillar structure with a diameter of 20-50 nm, BET surface area of 110 m2/g, and porosity of 96%. Using the high electron-rich oxygen density in the CA macromolecules and the large surface area of the CA nanoporous structure as an effective nanoreactor, the in-situ direct metallization technique was successfully used to synthesize Ag nanoparticles with an average diameter of 2.8 nm and a loading content of up to 6.98 wt%, which can hardly be achieved by previous methods. This novel procedure provides a facile and economic way to manufacture Ag nanoparticles supported on a porous membrane for various biomedical applications. 相似文献
4.
Nezar H. Khdary Mohamed A. Ghanem Mamduoh E. Abdesalam Mohamed M. Al-Garadah 《Journal of Saudi Chemical Society》2018,22(3):343-351
The CO2 sequestration is one of the most promising solutions to tackle global warming. In this study, spherical mesoporous silica particles (MPS-S) and rod-shaped mesoporous silica particles (MPS-R) loaded with Cu nanoparticles were selectively prepared and employed for CO2 adsorption. For the first time uniform Cu nanoparticles were incorporated into the rod-shaped mesoporous silica particles by post-synthesis modification using both N-[3-(trimethoxysilyl)propyl]ethylenediamine (PEDA) and ethylenediamine (EDA) as coupling agents. The physiochemical properties of the mesoporous and copper grifted silica composites were investigated by CHN elemental analysis, FTIR spectroscopy, thermogravimetric analysis, X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), surface area analysis, scanning, transmission electron microscopy and gas analysis system (GSD 320, TERMO). The mesoporous silica shows highly ordered mesoporous structures, with the rod-shaped particles having a higher surface area than the spherical ones. Copper nanoparticles with an average diameter of 6.0 nm were uniformly incorporated into the MPS-S and MPS-R. Moreover, Cu-loaded mesoporous silica exhibits up to 40% higher CO2 adsorption capacity than the bare MPS. The MPS-R modified with Cu nanoparticles showed a maximum CO2 adsorption capacity of 0.62 mmol/g and the humidity showed a slight negative effect on CO2 uptake process. The enhancement of CO2 adsorption onto transition metal/mesoporous substrates provides basis for imminent CO2 sequestration. 相似文献
5.
Deepak V Umamaheshwaran PS Guhan K Nanthini RA Krithiga B Jaithoon NM Gurunathan S 《Colloids and surfaces. B, Biointerfaces》2011,86(2):353-358
This study aims at developing a new eco-friendly process for the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using purified URAK. URAK is a fibrinolytic enzyme produced by Bacillus cereus NK1. The enzyme was purified and used for the synthesis of AuNPs and AgNPs. The enzyme produced AgNPs when incubated with 1 mM AgNO3 for 24 h and AuNPs when incubated with 1 mM HAuCl4 for 60 h. But when NaOH was added, the synthesis was rapid and occurred within 5 min for AgNPs and 12 h for AuNPs. The synthesized nanoparticles were characterized by a peak at 440 nm and 550 nm in the UV-visible spectrum. TEM analysis showed that AgNPs of the size 60 nm and AuNPs of size 20 nm were synthesized. XRD confirmed the crystalline nature of the nanoparticles and AFM showed the morphology of the nanoparticle to be spherical. FT-IR showed that protein was responsible for the synthesis of the nanoparticles. This process is highly simple, versatile and produces AgNPs and AuNPs in environmental friendly manner. Moreover, the synthesized nanoparticles were found to contain immobilized enzyme. Also, URAK was tested on RAW 264.7 macrophage cell line and was found to be non-cytotoxic until 100 μg/ml. 相似文献
6.
Signori AM Santos Kde O Eising R Albuquerque BL Giacomelli FC Domingos JB 《Langmuir : the ACS journal of surfaces and colloids》2010,26(22):17772-17779
A new and straightforward method for screening highly catalytically active silver nanoparticle-polymer composites derived from branched polyethyleneimine (PEI) is reported. The one-step systematic derivatization of the PEI scaffold with alkyl (butyl or octyl) and ethanolic groups led to a structural diversity correlated to the stabilization of silver nanoparticles and catalysis. Analysis of PEI derivative libraries identified a silver nanoparticle-polymer composite that was able to efficiently catalyze the p-nitrophenol reduction by NaBH(4) in water with a rate constant normalized to the surface area of the nanoparticles per unit volume (k(1)) of 0.57 s(-1) m(-2) L. Carried out in the presence of excess NaBH(4), the catalytic reaction was observed to follow pseudo-first-order kinetics and the apparent rate constant was linearly dependent on the total surface area of the silver nanoparticles (Ag-NPs), indicating that catalysis takes place on the surface of the nanoparticles. All reaction kinetics presented induction periods, which were dependent on the concentration of substrates, the total surface of the nanoparticles, and the polymer composition. All data indicated that this induction time is related to the resistance to substrate diffusion through the polymer support. Hydrophobic effects are also assumed to play an important role in the catalysis, through an increase in the local substrate concentration. 相似文献
7.
Chul Eui Kim Jong Seol Yoon Hae Jin Hwang 《Journal of Sol-Gel Science and Technology》2009,49(1):47-52
A crack-free silica aerogel monolith was fabricated from a cheap water glass derived silicic acid solution by adding glycerol,
which served as a drying control chemical additive (DCCA). The OH surfaces of the wet gel with glycerol were modified using
a TMCS/n-hexane mixture followed by solvent exchange from water to n-hexane. The obtained surface modified wet gel was dried at 75 °C under ambient pressure. The addition of glycerol appears
to give the wet gel a more homogeneous microstructure (larger pore size and uniform size distribution) as well as enhanced
stiffness. However, glycerol also retards surface modification and solvent exchange. The aerogel synthesized with glycerol
added to the silica sol maintained a relatively low bulk density compared with the aerogels aged in a mixed ethanol (EtOH)/TEOS
solution. The reproducibility of aerogel production was further improved in the aerogel synthesized with glycerol added to
the silica sol and aged in a 70%EtOH/30%TEOS solution. 相似文献
8.
In this study, the synthesis of sulfonic acid supported on ferrite–silica superparamagnetic nanoparticles (Fe3O4@SiO2@SO3H) as a nanocatalyst with large density of acidic groups is suggested. This nanocatalyst was prepared in three steps: preparation of colloidal iron oxide magnetic nanoparticles (Fe3O4 MNPs), coating of silica on Fe3O4 MNPs (Fe3O4@SiO2) and incorporation of sulfonic acid as a functional group on the surface of Fe3O4@SiO2 nanoparticles (Fe3O4@SiO2@SO3H). The properties of the prepared magnetic nanoparticles were characterized using transmission electron microscopy, infrared spectroscopy, vibrating sample magnetometry, X‐ray diffraction and thermogravimetric analysis. Finally, the applicability of the synthesized magnetic nanoparticles was tested as a heterogeneous solid acid nanocatalyst for one‐pot synthesis of diindolyloxindole derivatives in aqueous medium. Oxindole derivatives were produced by the coupling of indole and isatin compounds with good to high yields (60–98%). Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
Highly stable, aqueous dispersions, and hydrophilic ionic liquid-capped silver nanoparticles with positive surface charge were synthesized by in situ reduction of AgNO3 with NaBH4 in the presence of an imidazolium-based ionic liquid, viz., 1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]) at room temperature. Prepared silver nanoparticles were characterized by UV–vis spectra, transmission electron microscopy (TEM), and zeta potential. UV–visible spectrum of the aqueous medium peaked at 407 nm corresponding to the plasmon absorbance of silver nanoparticles. TEM analysis revealed the spherical shape of the particles with sizes about 9 nm and low polydispersed. The surface charge of the synthesized silver nanoparticles was determined as +5.0 mV. The ionic liquid ([C12mim][Cl]) capped silver nanoparticles were stable for at least 8 months. 相似文献
10.
A reproducible method for the successful silica coating of silver nanoparticles is reported. A selection of tri-functional reporter molecules were designed to allow controlled synthesis of silica shelled, dye coded, SERS active silver nanoparticles. 相似文献
11.
Qu Y Porter R Shan F Carter JD Guo T 《Langmuir : the ACS journal of surfaces and colloids》2006,22(14):6367-6374
We report the synthesis of tubular gold and silver nanoshells on silica nanowire core templates in solution. Silica nanowires were synthesized and characterized with optical and NMR methods. Gold nanoparticle seeds (2 to 3 nm) with weak repulsive surfactants such as tetrakis-hydroxymethyl-phosphonium chloride (THPC) were conjugated to the surface of these nanowires. A regrowth process was initiated from these nanoparticles on the surface of the silica nanowires dispersed in gold or silver stock solutions in the presence of reducing agents. Micrometers-long gold and silver tubular nanoshells (80-150 nm o.d.) were made, fully covering the silica nanowires. 相似文献
12.
Linggen Kong Akira Uedono Suzanne V. Smith Yukihiro Yamashita Ilkay Chironi 《Journal of Sol-Gel Science and Technology》2012,64(2):309-314
A set of silica particles was synthesized in oil–in–water emulsion with particle diameters ranging from ~42?nm to ~115?nm approximately. The porosity of the nanoparticles was analyzed using conventional nitrogen sorption and positron annihilation lifetime spectroscopy (PALS) techniques. The isotherm obtained using nitrogen sorption indicated that the particles were ‘non-porous?? however fitting data with Density Functional Theory model revealed a low concentration pore with diameters from 1.4?nm to 1.7?nm. The pore size was independent of the particle size. In contrast, analysis with PALS revealed a single pore size of ~0.6?nm present in all samples. Difference in results obtained for micropores <4?nm diameter is proposed to be dependent on models used and sample conditions for analysis. 相似文献
13.
The work presents a synthetic approach that combines methods of metal vapor synthesis (MVS), gelation and supercritical drying in order to obtain chitosan aerogels containing silver nanoparticles. On the first stage, two types of silver organosols were prepared via the eco-sustainable MVS method. Then the prepared silver organosols were used to modify chitosan powders for producing metal-chitosan powder composites. Gelation of the powder composites was performed in oxalic acid at elevated temperatures. Supercritical drying of the gels was implemented in order to preserve the formed porous structures. Thus, the chitosan powders modified with MVS-produced silver nanoparticles were used to prepare metal-chitosan aerogels. Characterization of the structure and the morphology of both powder and aerogel silver-chitosan composites was conducted by means of low temperature nitrogen adsorption, X-ray photoelectron spectroscopy, X-ray powder diffraction, small-angle X-ray scattering, SEM and TEM. Changes in the structure and morphology of silver nanoparticles between powder and aerogel composites were analyzed. 相似文献
14.
A new efficient heterogeneous catalyst was introduced for the epoxidation of styrene. The catalyst was obtained from deposition of gold nanoparticles on the cellulose aerogel. The catalyst was characterized with XRD, TGA, EDX, BET, FAAS and SEM. High yield and excellent selectivity were achieved for the epoxidation of styrene in solvent-free conditions at room temperature using H2O2 as a green oxidant during 1 h. The reaction has some advantages such as solvent-free and mild reaction conditions, low catalyst loading, high yield, excellent selectivity, green oxidant and short reaction duration. In addition, the catalyst is recyclable and applicable for six times without decrease in yield. 相似文献
15.
Kholoud M.M. Abou El-Nour Ala’a Eftaiha Abdulrhman Al-Warthan Reda A.A. Ammar 《Arabian Journal of Chemistry》2010,3(3):135-140
Over the past few decades, nanoparticles of noble metals such as silver exhibited significantly distinct physical, chemical and biological properties from their bulk counterparts. Nano-size particles of less than 100 nm in diameter are currently attracting increasing attention for the wide range of new applications in various fields of industry. Such powders can exhibit properties that differ substantially from those of bulk materials, as a result of small particle dimension, high surface area, quantum confinement and other effects. Most of the unique properties of nanoparticles require not only the particles to be of nano-sized, but also the particles be dispersed without agglomeration. Discoveries in the past decade have clearly demonstrated that the electromagnetic, optical and catalytic properties of silver nanoparticles are strongly influenced by shape, size and size distribution, which are often varied by varying the synthetic methods, reducing agents and stabilizers. Accordingly, this review presents different methods of preparation silver nanoparticles and application of these nanoparticles in different fields. 相似文献
16.
The synthesis and characterization of a new nitric oxide (NO)-releasing scaffold prepared from amine-functionalized silica nanoparticles are reported. Inorganic-organic hybrid silica was prepared via cocondensation of tetraethoxy- or tetramethoxysilane (TEOS or TMOS) and aminoalkoxysilane with appropriate amounts of ethanol (or methanol), water, and ammonia. The amine functional groups in the silica were converted to N-diazeniumdiolate NO donors via exposure to high pressures of NO (5 atm) under basic conditions. Control over both the structure and concentration of the silane precursors (i.e., tetraalkoxy- and aminoalkoxysilanes) and specific synthetic conditions allowed for the preparation of NO donor silica particles of widely varying sizes (d = 20-500 nm), NO payloads (50-1780 nmol.mg-1), maximum amounts of NO released (10-5500 ppb.mg-1), half-lives (0.1-12 h), and NO release durations (up to 30 h). The silica nanoparticles were characterized by solid-state 29Si nuclear magnetic resonance (NMR), atomic force microscopy (AFM), elemental analysis, and gas adsorption-desorption isotherms. The advantages of silica-derived NO storage/delivery systems over previously reported macromolecular NO donors include the ability to (1) store large quantities of NO, (2) modulate NO release kinetics, and (3) readily tune particle size based on the composition of the particle. In addition, a one-pot strategy for preparing the NO donor silica allows for straightforward, high-throughput synthesis and purification. 相似文献
17.
The oxidative dehydrogenation of alcohols to aldehydes catalyzed by Ag nanoparticles supported on Al2O3 was studied.The catalyst promoted the direct formation of imines by tandem oxidative dehydrogenation and condensation of alcohols and amines.The reactions were performed under mild conditions and afforded the imines in high yield(up to 99%) without any byproducts other than H2O.The highest activity was obtained over 5 wt%Ag/Al2O3 in toluene with air as oxidant.The reactions were also performed under oxidant-free conditions where the reaction was driven to the product side by the production of H2 in the gas phase.The use of an efficient and selective Ag catalyst for the oxidative dehydrogenation of alcohol in the presence of amines gives a new green reaction protocol for imine synthesis. 相似文献
18.
Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation
J.V. Rojas C.H. Castano 《Radiation Physics and Chemistry》2012,81(1):16-21
Palladium nanoparticles were produced and supported on multiwalled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a specific ratio of 2:1 of water-isopropanol was prepared and mixed with palladium chloride and the surfactant sodium dodecyl sulfate (SDS). The gamma radiolysis of water ultimately produces Pd metallic particles that serve as nucleation seeds. Isopropanol is used as an ion scavenger to balance the reaction, and the coalescence of the metal nanoparticles was controlled by the addition of SDS as a stabilizer. The size and distribution of nanoparticles on the carbon nanotubes (CNT) were studied at different surfactant concentrations and radiation doses. SEM, STEM and XPS were used for morphological, chemical and structural characterization of the nanostructure. Nanoparticles obtained for doses between 10 and 40 kGy, ranged in size 5-30 nm. The smaller nanoparticles were obtained at the higher doses and vice versa. Histograms of particle size distributions at different doses are presented. 相似文献
19.
Combining metal nanoparticles and dielectrics (e.g. silica) to produce composite materials with high dielectric constant is motivated by application in energy storage. Control over dielectric properties and their uniformity throughout the composite material is best accomplished if the composite is comprised of metal core - dielectric shell structured nanoparticles with tunable dimensions. We have synthesized silver nanoparticles in the range of 40-100nm average size using low concentration of saccharide simultaneously as the reducing agent and electrostatic stabilizer. Coating these silver particles with silica from tetraalkoxysilanes has different outcomes depending on the alcoholic solvent and the silver particle concentration. A common issue in solution-based synthesis of core-shell particles is heterogeneous nucleation whereupon two populations are formed: the desired core-shell particles and undesired coreless particles of the shell material. We report the formation of Ag@SiO(2) core-shell particles without coreless silica particles as the byproduct in 2-propanol. In ethanol, it depends on the silver surface area available whether homogeneous nucleation of silica on silver is achieved. In methanol and 1-butanol, core-shell particles did not form. This demonstrates the significance of controlling the tetraalkoxysilane hydrolysis rate when growing silica shells on silver nanoparticles. 相似文献
20.
Qihui Shen Yixuan Shan Yang Lü Peng Xue Xian Shu Dongmei Li Yan Liu Xiaoyang Liu 《中国化学会会志》2019,66(8):815-821
In this study, a facile, efficient, and surfactant‐free method to synthesize silica nanosphere‐supported ultrafine silver nanoparticles (AgNPs) (~2.5 nm) was developed, and their antibacterial effects were investigated. In the synthesis process, the hydrolysis of 3‐mercaptopropyltrimethoxysilane was adopted to provide thiol groups and in situ reduce Ag+ to Ag0 for ultrafine AgNPs formation on the surface of the silica nanosphere. Electron microscopy characterization of the complex formed revealed that the ultrafine AgNPs were not agglomerated and grow without any surfactants because there were no excess electrons transported from the shell to reduce the silver ions to silver atoms. The antibacterial effects of the supported ultrafine AgNPs with the surfactant‐free surface were evaluated against the Escherichia coli even at very low dosage. After incubation with 20 μg/mL silica‐supported AgNPs up to 120 min, 99.7% of the E. coli were inactivated, according to the bacterial viability measured by flow cytometry. 相似文献