首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive, by virtue of the unified Stroh formalism, the extremely concise and elegant solutions for two-dimensional and (quasi-static) time-dependent Green's functions in anisotropic magnetoelectroelastic multiferroic bimaterials with a viscous interface subjected to an extended line force and an extended line dislocation located in the upper half-plane. It is found for the first time that, in the multiferroic bimaterial Green's functions, there are 25 static image singularities and 50 moving image singularities in the form of the extended line force and extended line dislocation in the upper or lower half-plane. It is further observed that, as time evolves, the moving image singularities, which originate from the locations of the static image singularities, will move further away from the viscous interface with explicit time-dependent locations. Moreover, explicit expression of the time-dependent image force on the extended line dislocation due to its interaction with the viscous interface is derived, which is also valid for mathematically degenerate materials. Several special cases are discussed in detail for the image force expression to illustrate the influence of the viscous interface on the mobility of the extended line dislocation, and various interesting features are observed. These Green's functions can not only be directly applied to the study of dislocation mobility in the novel multiferroic bimaterials, they can also be utilized as kernel functions in a boundary integral formulation to investigate more complicated boundary value problems where multiferroic materials/composites are involved.  相似文献   

2.
This research is devoted to the study of anisotropic bimaterials with Kelvin-type viscoelastic interface under antiplane deformations. First we derive the Green’s function for a bimaterial with a Kelvin-type viscoelastic interface subjected to an antiplane force and a screw dislocation by means of the complex variable method. Explicit expressions are derived for the time-dependent stress field induced by the antiplane force and screw dislocation. Also presented is the time-dependent image force acting on the screw dislocation due to its interaction with the Kelvin-type viscoelastic interface. Second we investigate a rectangular inclusion with uniform antiplane eigenstrains embedded in one of the two bonded anisotropic half-planes by virtue of the derived Green’s function for a line force. The explicit expressions for the time-dependent stress field induced by the rectangular inclusion are obtained in terms of the simple logarithmic and exponential integral functions. It is observed that in general the stresses exhibit the logarithmic singularity at the four corners of the rectangular inclusion. Our results also show that when one side of the rectangular inclusion lies on the viscoelastic interface, the interfacial tractions are still regular at the two corners of the inclusion which are located on the interface. Last we address a finite Griffith crack normal to the viscoelastic interface by means of the obtained Green’s function for a screw dislocation. The crack problem is formulated in terms of a resulting singular integral equation which is solved numerically. The time-dependent stress intensity factors at the two crack tips are obtained and some interesting features are discussed.  相似文献   

3.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

4.
The electro-elastic stress field due to a piezoelectric screw dislocation near the tip of a wedge-shaped bi-material interface is derived. The screw dislocation is subjected to a line charge and a line force at the core. The explicit closed-form analytical solutions for the stress field are derived by means of the complex variable and conformal mapping methods. The stress and electric intensity factors of the wedge tip induced by the dislocation and the image force acting on the dislocation are also formulated and calculated. The influence of the wedge angle and the different bi-material constant combinations on the image force is discussed. Numerical results for three particular wedge angles are calculated and compared.  相似文献   

5.
Based on the complex variable method and perturbation technique, an analytical closed-form solution is derived for the interaction between a screw dislocation and collinear rigid lines along the interface of two dissimilar piezoelectric media under remote anti-plane mechanical and in-plane electrical loading. The rigid lines are either conducting or dielectric. The dislocation core is subjected to a line-force and a line-charge. A square-root singularity of field variables near the tip of an interfacial rigid line is observed. The rigid line extension force acting on the tip is obtained in terms of the strain and electric field intensity factor. The force on the dislocation due to the interfacial rigid line is calculated. The influence of the angular position of the dislocation, material properties and electromechanical coupling factor on the force is studied in detail.  相似文献   

6.
A screw dislocation outside an infinite cylindrical nano-inhomogeneity of circular cross section is considered within the isotropic theory of gradient elasticity. Fields of total displacements, elastic and plastic distortions, elastic strains and stresses are derived and analyzed in detail. In contrast with the case of classical elasticity, the gradient solutions are shown to possess no singularities at the dislocation line. Moreover, all stress components are continuous and smooth at the interface unlike the classical solution. As a result, the image force exerted on the dislocation due to the differences in elastic and gradient constants of the matrix and inhomogeneity, remains finite when the dislocation approaches the interface. The gradient solution demonstrates a non-classical size-effect in such a way that the stress level inside the inhomogeneity decreases with its size. The gradient and classical solutions coincide when the distances from the dislocation line and the interface exceed several atomic spacings.  相似文献   

7.
By applying semi-analytical point-force Green's functions obtained via the Stroh formulism, we derive simple line integrals to calculate the elastic displacement and stress fields for a three-dimensional dislocation loop in an anisotropic bimaterial system. The solutions for the case of anisotropy are more convenient for treating an arbitrary dislocation loop compared with traditional area integration. With this new formulation, we numerically examine the displacement, stress, and energy due to the interaction between a dislocation loop and the bimaterial interface in an Al–Cu system. The interactive image energy due to the elastic moduli mismatch across the interface is then numerically evaluated. The result shows that a dislocation loop is subjected to an attractive force by the interface when it lies in the stiff material, and a repulsive force when it lies in the soft material. Moreover, the dependence of the interactive image energy of a dislocation loop on the position and size of the dislocation loop are also demonstrated and discussed. Significantly, it is found that the interactive image energy for a dislocation loop depends only on the ratio d/a, where a is the loop diameter and d is its distance to the interface. The examples studied provide benchmark solutions for anisotropic bimaterial dislocation problems.  相似文献   

8.
The elastic fields of a circular glide dislocation loop lying in the interface separating two isotropic solids are obtained. It is shown that the interface transmits normal tractions in the form of a Dirac delta function. A unified formulation which permits direct calculation for the energy of a variety of interface dislocation configurations is presented. The energy of a loop segment from which the energy of any shape loop may be obtained through integration is derived. Such integration is carried out for a circular loop and comparisons are made with straight dislocations. The force due to line tension is also given, with certain intricacies pointed out.  相似文献   

9.
The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion with an imperfect interface in a piezoelectric solid is investigated. The appointed screw dislocation may be located either outside or inside the inclusion and is subjected to a line charge and a line force at the core. The analytic solutions of electroelastic fields are obtained by means of the complex-variable method. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces exerted on the piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed screw dislocation near the circular interface are discussed for variable parameters (interface imperfection, material electroelastic mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is also considered. It is found that the piezoelectric screw dislocation is always attracted by the electromechanical imperfect interface. When the interface imperfection is strong, the impact of material electroelastic mismatch on the image force and the equilibrium position of the dislocation becomes weak. Additionally, the effect of the nearby dislocations on the mobility of the appointed dislocation is very important.  相似文献   

10.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

11.
The two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to the complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.  相似文献   

12.
We examine the plane strain deformations of a bimaterial system consisting of a line edge dislocation interacting with a flat interface between two dissimilar isotropic half-planes in which the additional effects of interface elasticity are incorporated into the model of deformation. The entire system is assumed to be free of any external loading. Despite the fact that it is generally accepted that the separate interface modulus describing interface elasticity is permitted to take negative values, we show that simple closed-form solutions for the dislocation-induced stress field and the image force acting on the dislocation are available only when the interface modulus is assumed to be positive; the corresponding system admits no valid solutions when the interface modulus is negative. We present several numerical examples to illustrate our solutions. Additionally, we show that the influence of interface elasticity on the dislocation-induced interfacial stress field decays with increasing hardness of the adjoining half-plane (free of the dislocation). Moreover, we find that for a given (positive) in-plane interface modulus, the corresponding interface effects on the image force (acting on the dislocation) can reach maximum or minimum values when the Burgers vector of the dislocation is either parallel or perpendicular to the interface.  相似文献   

13.
This paper attempts to investigate the problem for the interaction between a uniformly moving screw dislocation and interface rigid lines in two dissimilar.anisotropic. materials. Integrating Riemann-Schwarz's symmetry principle with the analysis singularity of complex functions, we present the general elastic solutions of this problem and the closed form solutions for interfaces containing one and two rigid lines. The expressions of stress intensity factors, at the rigid line tips and image force acting on moving dislocation are derived explicitly. The results show that dislocation velocity has an antishielding effect on the rigid line tip and a larger dislocation velocity leads to the equilibrium position of dislocation closing with the rigid line. The presented solutions contain previously known results as the special cases.  相似文献   

14.
压电螺型位错和共线界面刚性线夹杂的干涉效应   总被引:2,自引:1,他引:1  
研究了压电材料中压电螺型位错和共线界面导电刚性线夹杂的电弹干涉效应.运用复变函数解析延拓技术与奇性主部分析方法,获得了该问题的一般解答.作为算例,求出了界面含一条刚性线夹杂时两种压电介质区域广义应力函数的封闭形式解.导出了作用在位错上的像力和刚性线夹杂表面剪应力和电位移的解析表达式.讨论了界面刚性线长度,两种材料的剪切模量比和压电系数比对位错力和刚性线表面剪应力的影响规律.为进一步研究该类问题提供了一个基本解。  相似文献   

15.
Based on the single-dislocation Green’s function, analytical solutions of the elastic fields due to dislocation arrays in an anisotropic bimaterial system are derived by virtue of the Cottrell summation formula. The singularity in the Peach–Koehler (P–K) force is removed by both rigorous mathematical approach and physical energy consideration. Numerical results for dislocation arrays in the Cu/Nb bimaterial with Kurdjumov–Sachs (K–S) orientation show that: (1) the traction continuity and periodic condition are both satisfied; (2) the maximum magnitude of the traction at the interface due to a mixed dislocation array is smaller than that due to a single mixed dislocation. In other words, the traction at the interface could be suppressed by the corresponding array with a relatively high density (L < 10 nm); however, the shear stress on the glide plane increases with increasing dislocation density; (3) the Cu/Nb interface attracts the mixed dislocation array in copper and repels the screw one there. This implies that the P–K force depends not only on the material properties, but also on the crystal orientation and the type of Burgers vector, among others.  相似文献   

16.
The physical system being studied here is an elastic dislocation in proximity to a material interface which has limited strength in shear. The configuration is relevant to elastic strain relaxation in bonded thin-film semiconductor material structures. A plane strain boundary value problem is formulated and an exact solution for the force on the dislocation versus distance from the interface is obtained. If the dislocation is close enough to the interface, its stress field causes irreversible slip across the interface. This slip, in turn, induces an attractive force on the dislocation. For the case of an edge dislocation with Burgers vector normal to the interface, it is found that the dislocation has a stable equilibrium position at a small distance from the interface. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Dislocation mobility and stability in inclusions can affect the mechanical behaviors of the composites. In this paper, the problem of an edge dislocation located within a nanoscale cylindrical inclusion incorporating interface stress is first considered. The explicit expression for the image force acting on the edge dislocation is obtained by means of a complex variable method. The influence of the interface effects and the size of the inclusion on the image force is evaluated. The results indicate that the impact of interface stress on the image force and the equilibrium positions of the edge dislocation inside the inclusion becomes remarkable when the radius of the inclusion is reduced to nanometer scale. The force acting on the edge dislocation produced by the interface stress will increase with the decrease of the radius of the inclusion and depends on the inclusion size which differs from the classical solution. The stability of the dislocation inside a nanoscale inclusion is also analyzed. The condition of the dislocation stability and the critical radius of the inclusion are revised for considering interface stresses.  相似文献   

18.
Current research on nanocrystalline metals and nanoscale multilayer thin films suggests extraordinary plastic strength is due to confinement of slip to individual grains or layers. To assess the magnitude of confinement, a Peierls model of slip transmission of a screw dislocation across a coherent, non-slipping interface is presented. The results reflect that large interfacial barriers to transmission are generated by rapid fluctuations in dislocation line energy near the interface due to elastic modulus mismatch, stacking fault energy mismatch, and antiphase boundary energy for transmission into an ordered phase. Coherency stress is predicted to dramatically alter the dislocation core configuration and impart additional strength regardless of the sign. Contributions to strength are not additive due to nonlinear coupling via the dislocation core configuration. The predicted barrier strength for a coherent (0 0 1) Cu/Ni interface is comparable to atomistic (EAM) results but larger than estimates from hardness data.  相似文献   

19.
For bimaterials with planar interfaces subjected to a line force and dislocation, Green’s functions are determined for all types of anisotropic materials including the nondegenerate, degenerate and extra-degenerate cases. The changes in Green’s function caused by material degeneracy are twofold: (i) implicit changes, attributable to material effects only and characterized by high-order eigenvectors and their intrinsic coupling in the higher-order eigensolutions; (ii) explicit changes, influenced by boundary and interface conditions, that cause additional terms in Green’s function. Material degeneracy affects the angular variation of the singular stress field, which may have significant implication on the failure prediction of strongly anisotropic materials. For all material types, Green’s functions are obtained for bimaterials with a planar interface, and for multi-material wedges subjected to a line force and dislocation at the vertex. The results are expressed in a concise notation in terms of the complete set of eigenvectors and kernel matrices of analytic functions.  相似文献   

20.
A method of potentially wide application is developed for deriving analytical expressions of the elastic interaction between a screw dislocation dipole or a concentrated force and a crack cutting perpendicularly across the interface of a bimaterial. The cross line composed of the interface and the crack is mapped into a line, and then the complex potentials are educed. The Muskhelishvili method is extended by creating a Plemelj function that matches the singularity of the real crack tips, and eliminates the pseudo tips’ singularity induced by the conformal mapping. The stress field is obtained after solving the Riemann–Hilbert boundary value problem. Based on the stress field expressions, crack tip stress intensity factors, dislocation dipole image forces and image torque are formulated. Numerical curves show that both the translation and rotation must be considered in the static equilibrium of the dipole system. The crack tip stress intensity factor induced by the dipole may rise or drop and the crack may attract or reject the dipole. These trends depend not only on the crack length, but also on the dipole location, the length and the angle of the dipole span. Generally, the horizontal image force exerted at the center of the dislocation dipole is much smaller than the vertical one. Whether the dipole subjected to clockwise torque or anticlockwise torque is determined by whether the Burgers vector of the crack-nearby dislocation of the dipole is positive or negative. A concentrated load induces no singularity to crack tip stress fields as the load is located at the crack line. However, as the concentrated force is not located on the crack line but approaches the crack tip, the nearby crack tip stress intensity factor KIIIu increases steeply to infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号