首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Tetrahedron》2007,63(22):4748-4755
Starting from p-adamantylcalix[4]- and [6]arenes functionalized with carboxylic acid or ester groups at the adamantane nuclei, carbamoylmethylphosphine oxide (CMPO)-containing ligands of a novel type were synthesized. They were studied as extractants for a series of f-block elements including radioactive 152Eu(III), 241Am(III), 233U(VI), and 239Pu(IV). Tetrameric ligand 4b in which CMPO residues are connected to adamantane nuclei through methylene groups gave the best extraction results for lanthanides and actinides. For all the ligands the extraction efficiency does not decrease at higher nitric acid concentration. Although the discrimination between trivalent actinides and lanthanides is not good, all ligands are highly selective for thorium(IV) with the best separation factor achieved in the case of hexameric ligand 5 (DTh/DLn>24).  相似文献   

2.
The radiation stability of N,N-di-dodecyl-N′,N′-di-octyl-3-oxapentane-1,5-diamide (D3DODGA) was studied by γ-irradiation of the solvent up to a absorbed dose of 1,000 kGy. The effect of γ-irradiation on the radiolytic degradation of D3DODGA was assessed by measuring the distribution ratio of Am(III) (D Am(III)) as well as the third phase formation in the irradiated D3DODGA-n-dodecane solution. The D Am(III) in the irradiated solution decreased with increase of absorbed dose. The critical aqueous concentration of Nd(III) above which the third phase forms, increased with increase of absorbed dose. However, the limiting organic concentration of Nd(III) remained at ~25 mM irrespective of the absorbed dose. Recovery of Am(III) from the radiolytically degraded organic phase showed that back extraction of Am(III) was quantitative in a few contacts using dilute nitric acid. Our studies clearly indicated that radiolytic degradation of D3DODGA in n-dodecane is marginal even at the absorbed dose of 1,000 kGy, and therefore D3DODGA is a potential candidate for minor actinide partitioning.  相似文献   

3.
A novel family of metallocycles was constructed by a one-pot self-assembly of three analogous bis(terpyridine) ligand monomers L1-L3, having different bent angles, with metal ions (Zn2+ or Cd2+). The dibenzo[b,d]thiophene-containing ligand L3 assembled with the metal ions to form a single trimer, whereas the dibenzo[b,d]furan-containing ligand L2 and dibenzo[b,d]carbazole-containing ligand L1 formed a mixture of trimers and tetramers. Heteroatoms (N, O, S) significantly contributed to the molecular size of the assemblies, owing to the bent angle of the bis-terpyridines ligands.  相似文献   

4.
The new ligand N-(2-acetyl-2-thiazoline)-N′-(2-thiazolidin-2-one) azine (ATHTd) has been synthesized and characterized by X-ray diffraction, elemental analysis, 1H and 13C NMR spectra, elemental analysis, IR and UV–Vis spectra. Also the complexes [NiCl(ATHTd)(H2O)2]Cl (1), [Ni(ATHTd)2](NO3)2·H2O (2), [CuCl2(ATHTd)] (3) and [ZnCl2(ATHTd)2] (4) have been isolated and characterized in the solid state by X-ray diffraction, elemental analysis, IR spectroscopy, UV–Vis–NIR diffuse reflectance, magnetic susceptibility measurements and, in the case of copper(II) complex, EPR spectroscopy. X-ray data indicate that the environment around nickel atoms in 1 and 2 may be described as a distorted octahedral geometry. In 1 the metal ion is coordinated to one chloride ligand, one water molecule and one ATHTd molecule which acts as a tridentate ligand, while in 2 Ni(II) is coordinated to two tridentate ATHTd molecules. With regard to 3, the coordination geometry around copper(II) ion can be considered a distorted square pyramid with the cation coordinated to one tridentate ATHTd ligand and two chloride ligands. Finally, in the case of 4, the Zn(II) is bonded to two ATHTd molecules that acts as a monodentate ligand and two chloride atoms in a distorted tetrahedral geometry. The structure of ATHTd in the complexes presents an amino-2-thiazoline form instead of the iminothiazolidine one observed in free ATHTd. Another significant structural change in complexes, except in 4, is due to the different degree of rotation of the thiazoline rings around the C(1)–C(4) and C(6)–N(3) bonds, which permit the coordination through thiazolinic nitrogen atoms.  相似文献   

5.
The mono-dentate ligands, 3-aminomethyl-N-phthalimido-pyridine (L1) and 3-amino-N-phthalimido-pyridine (L2), were synthesised using a solvent-free melt method. These ligands were then used to access three pairs of functionalised luminescent ReI complexes of the generic type fac-{Re(CO)3(diimine)(Ln)}(BF4) [where diimine = 4,4′-dimethyl-2,2′-bipyridine (dmb); 2,2′-bipyridine (bpy); 1,10-phenanthroline (phen)]. X-ray crystallography has been used to structurally characterise five of the complexes showing that in the cases of the L1 species the phthalimide unit is adjacent to and co-planar with the coordinated diimine ligand. Solution state UV–Vis absorption, electrochemistry and IR studies confirm that the proposed formulations and coordination modes exist in solution. The photophysical studies show that the visible emission from each of the six complexes is 3MLCT at room temperature. Within each pair of complexes the precise energy of the emission was subtly dependent upon the axial ligand, Ln with luminescence lifetimes in the range 121–288 ns.  相似文献   

6.
A new asymmetric N,N′-bis(substituent)oxamide ligand, N-phenolato-N′-(3-dimethylaminopropyl)oxamide (H3pdmapo), and two of its binuclear Cu(II) complexes with different terminal ligands, namely [Cu2(pdmapo)(phen)(H2O)](ClO4) (1) and [Cu2(pdmapo)(bpy)(CH3OH)](ClO4) (2), where phen = 1,10-phenanthroline and bpy = 2,2′-bipyridine, have been synthesized and characterized. The crystal structures of both complexes have been determined by single-crystal X-ray diffraction. Both structures contain binuclear Cu(II) cationic complexes with pdmapo3? ligands. The asymmetric pdmapo3? ligands bridge two Cu(II) atoms in the cis conformation and the Cu···Cu separations through the oxamide bridge are 5.2046(18) and 5.207(2) Å for complexes 1 and 2, respectively. The coordination environments of the two Cu(II) atoms in each binuclear complex are different. The copper occupying the inner site of the pdmapo3? ligand is four-coordinated in a CuN3O distorted square-planar environment, while the other is five-coordinated in a square pyramid geometry. In complex 1, O–H···O and C–H···O hydrogen bonds link the complex into a one-dimensional chain. In complex 2, O–H···O hydrogen bonds link the molecules to form a dimer, together with two types of strong ππ interactions, giving a two-dimensional network structure. The cytotoxicities and DNA-binding properties of H3pdmapo and the two complexes were studied. The experimental evidence suggests that the ligand binds to DNA via a groove binding mode, while the binuclear complexes bind intercalatively to DNA.  相似文献   

7.
A series of hetero ligand MLB complexes (15) were synthesised from tridentate NO2 type Schiff base [H2L: (E)-2-((2-hydroxy-4-methoxyphenyl)(phenyl)methyleneamino)benzoic acid; derived from 2-hydroxy-4-methoxybenzophenone and 2-aminobenzoic acid] and bidentate N2 type 1,10-phenanthroline (B: phen) ligands. The structural characterization of the synthesised MLB complexes were carried out via analytical as well as various spectral studies. Additionally, the low molar conductance values (Λm = 14–22 Ω−1 cm2 mol−1) imply that the complexes (15) are non-electrolytes. The obtained results reinforce that stoichiometry of the mononuclear hetero ligand complexes can be represented as [M(II)-Schiff base(L)-phen(B)·H2O] and both H2L and (B) ligands can act as tri and bidentates respectively. Moreover, both the ligands bind with metal(II) ions to build a stable six, six, five membered chelate rings with octahedral geometry. The existing solvent water molecule is confirmed from thermal as well as vibrational analysis. Their microcrystalline nature and uniform surface morphology were confirmed by both powder XRD and SEM studies. 3D molecular modeling and analysis of NiLB and CuLB complexes (3 and 4) were also studied. Mn(II), Ni(II) and Cu(II) complexes (1, 3 and 4) strongly interact with DNA through intercalation binding with strong binding constant values. The obtained Kapp values were 5.23, 4.98, 6.36, 7.21 and 4.86 × 105 mol−1 for MLB complexes (15) respectively and the negative Δ3G values shown that all the complexes are strongly interact with DNA in a spontaneous manner. Further, remarkable biological, antioxidant and DNA activities were remarkably exhibited by MnLB, NiLB and CuLB complexes.  相似文献   

8.
Five conical calix[4]arenes that have a PPh2 group as the sole functional group anchored at their upper rim were assessed in palladium‐catalysed cross‐coupling reactions of phenylboronic acid with aryl halides (dioxane, 100 °C, NaH). With arylbromides, remarkably high activities were obtained with the catalytic systems remaining stable for several days. The performance of the ligands is comparable to a Buchwald‐type triarylphosphane, namely, (2′‐methyl[1,1′‐biphenyl]‐2‐yl)diphenylphosphane, which in contrast to the calixarenyl phosphanes tested may display chelating behaviour in solution. With the fastest ligand, 5‐diphenylphosphanyl‐25,26,27,28‐tetra(p‐methoxy)benzyloxy‐calix[4]arene ( 8 ), the reaction turnover frequency for the arylation of 4‐bromotoluene was 321 000 versus 214 000 mol(ArBr).mol(Pd)?1. h?1 for the reference ligand. The calixarene ligands were also efficient in Suzuki cross‐coupling reactions with aryl chlorides. Thus, by using 1 mol % of [Pd(OAc)2] associated with one of the phosphanes, full conversion of the deactivated arenes 4‐chloroanisole and 4‐chlorotoluene was observed after 16 h. The high performance of the calixarenyl–phosphanes in Suzuki–Miyaura coupling of aryl bromides possibly relies on their ability to stabilise a monoligand [Pd0L(ArBr)] species through supramolecular binding of the Pd‐bound arene inside the calixarene cavity.  相似文献   

9.
The coordination mode of thioether–pyrazole ligand, 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane (bdtp) and 1,8-bis-(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) ligands, in Pd(II) complexes containing a diphosphine ligand is determined by subtle changes in size of the bridge between the two phosphorus atoms. The 1H NMR and 31P{1H} NMR at variable temperature in acetonitrile solution prove that the hemilabile character of the bdtp ligand depend on the diphosphine ligand. Thus, while in [Pd(bdtp)(dppe)](BF4)2 [1](BF4)2 the thioether group not participate in the Pd(II) coordination sphere, two isomers with different coordination (P2N2 vs P2NS) are in equilibrium in [Pd(bdtp)(dppp)](BF4)2 [2](BF4)2 acetonitrile solution. For complexes [Pd(bddo)(dppe)](BF4)2 [3](BF4)2 and [Pd(bddo)(dppp)](BF4)2 [4](BF4)2, only the coordination N,N is observed.  相似文献   

10.
Three copper complexes {[Cu2(L1)2]·I3} n (1), [Cu(L2)2] (2), and [Cu2I2(L3)2(MBI)2] (3) (MBI = 2-mercaptobenzimidazole, L1 = N-(benzothiazol-2-yl)acetamidine anion, L2 = N-(thiazol-2-yl) acetamidine anion, L3 = 3-methyl-[1,2,4]thiadiazolo[4,5-a]benzimidazole) have been synthesized solvothermally by the reactions of CuI with 2-benzothiazolamine, 2-aminothiazole and 2-mercaptobenzimidazole (MBI), respectively, in acetonitrile. In situ C–N (or C–S) cross-coupling ligand reactions were observed in all three complexes, and hypothetical reaction mechanisms are proposed for the formation of the ligands and their complexes. The single-crystal X-ray structural analysis reveals that both the Cu(II) and Cu(I) atoms are located in pseudo-tetrahedral environments in complex 1, and L1 acts as a double bidentate ligand which coordinates with the Cu(I) and Cu(II) atoms to form a 1D coordination polymer. Unlike complex 1, the Cu(II) atom in complex 2 is in a square planar geometry, coordinated by two L2 ligands with relatively small steric hindrance. In complex 3, the Cu(I) atoms have a distorted tetrahedral geometry, being coordinated by one nitrogen atom from L3, two sulfur atoms of MBI ligands, and one iodide. The sulfur atoms from MBI ligands bridge two Cu(I) atoms to form a binuclear complex. All three complexes exhibit relatively high thermal stabilities. Complex 1 displays intense fluorescence emission at 382 nm and complex 3 displays two intense fluorescence emissions at 401 and 555 nm.  相似文献   

11.
The reaction of RhCl3 with SbPh3 that produces mer-[RhCl3(SbPh3)3] 1 and trans,mer-[RhCl2(Ph)(SbPh3)3] 2 [A. Cavaglioni, R. Cini, J. Chem. Soc., Dalton Trans. (1997) 1149 (and references cited therein)], as well as the transformation of 1 to 2, was studied in details using the UV–Vis spectroscopy and density functional approaches. We elucidated the mechanism of Sb–C(Ph) bond activation and Rh–C(Ph) bond formation during these processes. Experimental studies show that the first step of the reaction of RhCl3 with SbPh3 is the formation of 1, which later rearranges to complex 2 via a concerted mechanism. The transition state associated with this transformation includes the Rh(III) center (hepta-coordinate) that interacts with three Cl? ligands, two Sb-centers of SbPh3 ligands, and one Sb–Ph bond of the third SbPh3 ligand. The Cl? ligand, trans to Sb, bridges Rh and Sb atom from the third SbPh3 ligand. A possible pathway involving rhodium(I) intermediate species was also taken into account. The calculated geometry parameters of models of complexes 1 and 2 are in good agreement with the available X-ray data. Presented relative energies of the studied reactions are in good agreement with the relative yields of 1 and 2.  相似文献   

12.
the extraction behavior of certain tervalent lanthanides into chloroform solutions containing various N-phenylacylhydroxamic acids is reported. The ligands include N-o-methylphenyl-m-trifluoromethylbenzohydroxamic acid (MPFBHA), N-m-trifuloromethylphenyl-o-methylbenzohydroxamic acid (FPMBHA), N-o-methylphenylbenzohydroxamic acid (MPBHA), N-phenyl-o-methylbenzohydroxamic acid (PMBHA), N-o-methylphenyl-p-tertbutylbenzohydroxamic acid (MPBBHA), and N-phenyl-p-tert-butylbenzohydroxamic acid (PBBHA). Of the N-phenylacylhydroxamic acids mentioned, only PBBHA was found suitable to extract the lanthanides under the experimental conditions used. The selected lanthanides, namely La, Pr, Eu, Ho, and Yb, were all found to extract with PBBHA as self-adducts of the form LnL3 · 2 HL, where L and HL denote the ligand anion and neutral ligand, respectively. The extraction constants and separation factors for the lanthanides with PBBHA were evaluated. It is possible that steric hindrance prevents the lanthanides from extracting with MPFBHA, FPMBHA, MPBHA, PMBHA, or MPBBHA.  相似文献   

13.
The coordination mode of thioether–pyrazole ligand, 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane (bdtp) and 1,8-bis-(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) ligands, in Pd(II) complexes containing a diphosphine ligand is determined by subtle changes in size of the bridge between the two phosphorus atoms. The 1H NMR and 31P{1H} NMR at variable temperature in acetonitrile solution prove that the hemilabile character of the bdtp ligand depend on the diphosphine ligand. Thus, while in [Pd(bdtp)(dppe)](BF4)2 [1](BF4)2 the thioether group not participate in the Pd(II) coordination sphere, two isomers with different coordination (P2N2 vs P2NS) are in equilibrium in [Pd(bdtp)(dppp)](BF4)2 [2](BF4)2 acetonitrile solution. For complexes [Pd(bddo)(dppe)](BF4)2 [3](BF4)2 and [Pd(bddo)(dppp)](BF4)2 [4](BF4)2, only the coordination N,N is observed.  相似文献   

14.
Palladium(II) complexes containing di-(2-pyridyl)-N-methylimine (1), di-(2-pyridyl)methanol (2) and di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate (4) ligands were synthesized and characterized by 1H and 13C NMR in solution, IR and X-ray single crystal diffraction. Crystal structures of cis-dichloro[di-(2-pyridyl)-N-methylimine]palladium(II) (5), cis-dichloro[di-(2-pyridyl)methanol]palladium(II) (6) and cis-dichloro[di-(2-pyridyl)methyl-N,N-diethyldithiocarbamate]palladium(II) (7) showed a bidentate coordination mode of the di-(2-pyridyl)methane derivatives 1, 2 and 4. In these complexes is observed the formation of a five-membered chelate ring with the iminic ligand 1 and six-membered chelate rings with the pyridinic ligands 2 and 4. In all complexes the palladium atom displays a distorted square planar geometry.  相似文献   

15.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

16.
《Tetrahedron: Asymmetry》2014,25(4):327-333
First synthesis of C2-symmetric chiral O,N,N,O-tetradentate 2,2-bipyridyldiolpropane ligands is described. The Mukaiyama–Michael reaction was applied as an important reaction for the synthesis of 2,2-bipyridylpropane 9. Among the ligands synthesized, ligand 11 exhibits excellent chiral induction (up to 97% ee) in diethylzinc addition to various aldehydes. The use of additional Lewis acid such as Ti(OiPr)4 in diethylzinc addition reaction is not required for the present catalytic system.  相似文献   

17.
The catalytic properties of disilicoicosatungstates, [{γ-SiW10O32(H2O)2}2(μ-O)2]4− (2) and [H(γ-SiW10O32)2(μ-O)4]7− (3), and their parent divacant γ-Keggin type silicodecatungstate, [γ-SiW10O34(H2O)2]4− (1), toward C–C bond formation reactions have been investigated. The disilicoicosatungstate 2 with aquo ligands exhibits the acidic nature and catalyzes the Mukaiyama-aldol condensation and carbonyl-ene reaction, while 1 and 3 are rather basic and catalyze the Knoevenagel condensation. Therefore, the acid–base properties of a series of lacunary γ-Keggin silicotungstate derivatives 13 are clearly different, and the catalyses of 13 depend on the molecular structures while 13 are composed of a common [SiW10O32] fragment.  相似文献   

18.
《Polyhedron》1999,18(8-9):1355-1362
New symmetrical 2,6-bis{N-[2-(2-benzimidazolyl)-phenyl]iminomethyl}-4-methylphenol (L1) and unsymmetrical 2-N-[2-(2-benzimidazoyl)phenyl]iminomethyl-6-[(4-methylpiperazin-1-yl)-methyl]-4-methylphenol (L2) binucleating ligands have been synthesized. Complexation of these ligands with Cu(II) perchlorate and appropriate sodium salt offered the binuclear copper(II) complexes, [Cu2L(X)](ClO4)2, (X=Cl, OH and OAc 1–6). Their spectral, electrochemical and magnetic properties have been studied. Two distinct reduction peaks were observed at negative potentials. The electrochemical data shows that the complexes of L2 undergo reduction at less negative potential (E1pc=−0.15 to −0.25 V, E2pc=−0.45 to −0.65 V) when compared to the complexes of L1 (E1pc=−0.45 to −0.58 V, E2pc=−1.07 to −1.103 V). A variable temperature magnetic study on the complexes of the ligand L1 showed strong antiferromagnetic coupling between the copper atoms (−2J=285–295 cm−1), in contrast, the complexes of the ligand L2 showed weak antiferromagnetic interaction (−2J=60–85 cm−1). Electron spin resonance (ESR) spectra (RT) of the complexes of ligand L1 showed no signal and the complexes of ligand L2 showed a broad feature.  相似文献   

19.
Polypyridyl ruthenium(II) dicarbonyl complexes with an N,O- and/or N,N-donor ligand, [Ru(pic)(CO)2Cl2] (1), [Ru(bpy)(pic)(CO)2]+ (2), [Ru(pic)2(CO)2] (3), and [Ru(bpy)2(CO)2]2+ (4) (pic=2-pyridylcarboxylato, bpy=2,2′-bipyridine) were prepared for comparison of the electron donor ability of these ligands to the ruthenium center. A carbonyl group of [Ru(L1)(L2)(CO)2]n (L1, L2=bpy, pic) successively reacted with one and two equivalents of OH to form [Ru(L1)(L2)(CO)(C(O)OH)]n−1 and [Ru(L1)(L2)(CO)(CO2)]n−2. These three complexes exist as equilbrium mixtures in aqueous solutions and the equilibrium constants were determined potentiometrically. Electrochemical reduction of 2 in CO2-saturated CH3CN–H2O at −1.5 V selectively produced CO.  相似文献   

20.
A new bioactive material of cobalt(II) with 5,10,15,20-tetrakis[4 (benzoyloxy)phenyl] porphyrin (TPBP) and bpy ligands ([CoII(TPBP)(bpy)2] 1) has been synthesized and characterized by Single-crystal X-ray diffraction (SCXRD), spectroscopic methods and quantum-chemistry calculations. In the crystalline structures of six coordinated Co(II) [CoII(TPBP)(bpy)2] 1, linear 1D polymeric chains were observed in which all the porphyrin units are aligned parallel to each other. The crystal packing is stabilized by inter-and intramolecular C–H⋯O and C–H⋯N hydrogen bonds, and by weak C–H⋯Cg π interactions. Interestingly, NBO–Second-order perturbation theory analysis, carried out at the UB3LYP/6-31G(d)/SDD DFT level of theory, demonstrated that a two-center bond between the nitrogen atoms and the cobalt ions (Co) was not found, the Co–Npy/bp interactions are coming from an electronic delocalization between the Npy/Nbp filled orbitals to the anti-bonding LP*(4) and LP*(5) metal NBOs. Mass spectroscopy, and elemental analysis were also investigated to confirm the molecular structure. The downfield shift and the peak broadening of the axial ligand resonances observed in the 1H NMR indicated the contiguity to the paramagnetic Co(II) center. Additionally, the photophysical properties have been evaluated by UV–visible absorption, and fluorescence emission spectroscopies. Finally, bioactivity investigations revealed that free porphyrin TPBP, CoIITPBP and complex 1 could be used as potential antioxidant agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号