首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-similar elastoplastic field induced by quasi-static expansion of a pressurized cylindrical cavity is investigated for Mises solids under the assumption of plane-strain. Material behavior is modeled by the elastoplastic J2 flow theory with the standard hypoelastic version. The theory accounts for elastic-compressibility and allows for arbitrary strain-hardening (or softening) in the plastic range. A formulation of the exact governing equations is presented and analyzed in detail for the remote elastic field and for asymptotic plastic behavior near the cavity wall, along with numerical investigations for the entire deformation zone. An analytical solution was obtained under the axially-hydrostatic assumption (axial stress coincides with hydrostatic stress) within an error of about 2% or less as compared to the exact, numerically evaluated, value of cavitation pressure. Two ad-hoc compressibility approximations for cavitation pressure are suggested. These relations, which give very accurate results, appear to provide tight lower and upper bounds on the exact value of cavitation pressure within an error of less than 0.5%.  相似文献   

2.
采用双剪应力屈服准则,对在内压作用下的无缺陷管道进行了塑性极限分析,得到了管道爆破压力的计算公式;并且将结果与基于Tresca、Mises、平均剪应力屈服准则得到的爆破压力进行了比较.研究结果表明:爆破压力随着管道材料的应变硬化指数的增大而减小,随着管道厚径比的增大而增大;此外,基于双剪应力屈服准则得到的管道爆破压力为爆破压力的上限,而基于Tresca屈服准则得到的爆破压力为管道爆破压力的下限.  相似文献   

3.
Conical indentation of strain hardening solids is examined within the spherical cavity expansion simulation pattern in finite strain plasticity. Analysis accounts for elastic compressibility and arbitrary strain hardening. Unlike existing studies of indentation processes that assume a definite yield point, the present formulation applies also to smooth elastoplastic transition. Approximate hardness formulae are derived, at different levels of accuracy, and compared with available finite element calculations. Effects of pile-up, or sink-in, and external friction have been ignored. It is suggested that test data over a range of cone angles can be used to reconstruct the axial stress–strain curve. The relation between cavitation and conical indentation is discussed. It is shown that the cylindrical Tresca cavitation yield stress serves as a natural scaling stress in estimating hardness of strain hardening solids.  相似文献   

4.
5.
简支圆板在复杂荷载作用下的塑性极限荷载统一解析解   总被引:2,自引:0,他引:2  
王延斌  俞茂宏 《力学季刊》2002,23(4):575-582
本文采用双剪统一屈服准则对受线性荷载和边缘弯矩联合作用下的简支圆板进行了塑性极限分析,考虑了联合作用的两种形式,分别给出了统一的解析解。得到了极限荷载随不同屈服准则的变化曲线。对于不同的材料,本文均能给出相应的极限荷载。已有的Tresca准则、Von Mises准则、双剪应力准则的解答是文中解答的特例或逼近。本文得到的一系列有规则变化的解析解,可以适用于各种拉压强度相同材料的简支圆板的塑性极限荷载求解。文中统一解大于Tresca单剪理论解,它可以更好地发挥材料的强度潜力,工程应用可以取得明显的经济效益。  相似文献   

6.
在第1 部分,讨论弹性力学的圣维南原理在线弹性断裂力学中的应用,举例说明它的误用会引起很大的误差. 在第2 部分,讨论塑性力学中的Tresca 屈服面和Mises 屈服面的形状和大小,并推广到对Mohr-Coulomb 屈服面和Drucker-Prager 屈服面的描述,给出主应力空间中Mises 屈服面和Tresca 屈服面的形状和大小的三维图象,并以此更正和补充现有的弹塑性力学教材.  相似文献   

7.
The exact solution of the problem of the torsion of a solid cylindrical shaft with an ellipsoidal cavity is expanded into a series in powers of an eccentricity parameter. At the points of the cavity where the stress concentration is maximum (minimum), the expansion coefficients for the exact and approximate solutions coincide. The approximate solution is obtained by the first version of the boundary-shape perturbation method, which is used to solve three-dimensional problems of elasticity for bodies of revolution with nearly canonical shape. Successive approximations as an iteration process are shown to converge to the exact solutions  相似文献   

8.
冲击荷载作用下简支圆板的塑性动力响应统一解   总被引:4,自引:0,他引:4  
采用统一强度理论求解了简支圆板在中等脉冲荷载作用下的动力响应问题,得出了统一的动力塑性极限荷载、内力场和速度场,并给出了上限解和下限解。讨论了静力许可条件和运动许可条件。利用本文的解还得出了简支圆板在静力荷载作用下的极限荷载、内力场和速度场。根据选择不同的拉压比参数,本文所给出的解可以适用于各种拉压异性和拉压同性材料。Tresca解、Mohr Coulomb解和双剪统一屈服准则解是本文的特例,Mises解是本文当=1和b=0.5时的线性逼近。研究结果表明,拉压比和强度理论参数b对动力解的影响要大于对静力解的影响,所以,根据材料的不同选择合适的强度理论,对于更好的发挥材料的强度潜力,减轻结构的重量具有重要的意义。  相似文献   

9.
ABSTRACT

An elastoplastic analysis of an axisymmetric cylinder subjected to linear body forces is presented. The effect of reinforcement and anisotropy are also included. Classical plasticity and familiar assumptions of plane stress and strain are used to arrive at closed-form solutions for the case of linear body forces. The problem is solved for the general case in which orthotropy is considered in the elastic range. For the case of plasticity, first the isotropic yield functions (von Mises and Tresca) are used and then the problem is extended to the case of Hill's yield criterion. Closed-form solutions are found for both the von Mises (plane strain) and Tresca (plane stress and strain) cases.  相似文献   

10.
Finite-incremental Tresca and von Mises theories are developed for solid circular-section torsion-tension members subjected to proportionate and nonproportionate loading. The materials are assumed to be isotropic and even. Two Tresca theories and a von Mises theory are compared with test data obtained from torsion-tension members. Three different kinds of steels were tested; they are hot-rolled mild steel, annealed mild steel, and hot-rolled SAE 1017 steel. The fully plastic values of axial load and torque predicted by the Tresca theories agree with the experimental results; however, the deformations, in the strain-hardening region, predicted by both of the Tresca theories were greater than observed. The von Mises theory is nonconservative in predicting the fully plastic loads of torsion members and torsion-tension members and in predicting the deformations of torsion members in the strain-hardening region, but gives good correlation between predicted and experimental deformations for the torsion-tension members in the strain-hardening region.  相似文献   

11.
This paper studies the propagation of a plane-strain fluid-driven fracture with a fluid lag in an elastic solid. The fracture is driven by a constant rate of injection of an incompressible viscous fluid at the fracture inlet. The leak-off of the fracturing fluid into the host solid is considered negligible. The viscous fluid flow is lagging behind an advancing fracture tip, and the resulting tip cavity is assumed to be filled at some specified low pressure with either fluid vapor (impermeable host solid) or pore-fluids infiltrating from the permeable host solid. The scaling analysis allows to reduce problem parametric space to two lumped dimensionless parameters with the meaning of the solid toughness and of the tip underpressure (difference between the specified pressure in the tip cavity and the far field confining stress). A constant lumped toughness parameter uniquely defines solution trajectory in the parametric space, while time-varying lumped tip underpressure parameter describes evolution along the trajectory. Further analysis identifies the early and large time asymptotic states of the fracture evolution as corresponding to the small and large tip underpressure solutions, respectively. The former solution is obtained numerically herein and is characterized by a maximum fluid lag (as a fraction of the crack length), while the latter corresponds to the zero-lag solution of Spence and Sharp [Spence, D.A., Sharp, P.W., 1985. Self-similar solution for elastohydrodynamic cavity flow. Proc. Roy. Soc. London, Ser. A (400), 289–313]. The self-similarity at small/large tip underpressure implies that the solution for crack length, crack opening and net fluid pressure in the fluid-filled part of the crack is a given power-law of time, while the fluid lag is a constant fraction of the increasing fracture length. Evolution of a fluid-driven fracture between the two limit states corresponds to gradual expansion of the fluid-filled region and disappearance of the fluid lag. For small solid toughness and small tip underpressure, the fracture is practically devoid of fluid, which is localized into a narrow region near the fracture inlet. Corresponding asymptotic solution on the fracture lengthscale corresponds to that of a crack loaded by a pair of point forces which magnitude is determined from the coupled hydromechanical solution in the fluid-filled region near the crack inlet. For large solid toughness, the fluid lag is vanishingly small at any underpressure and the solution is adequately approximated by the zero-lag self-similar large toughness solution at any stage of fracture evolution. The small underpressure asymptotic solutions obtained in this work are sought to provide initial condition for the propagation of fractures which are initially under plane-strain conditions.  相似文献   

12.
The influence of the plasticity yield surface on the development of instabilities in plane plates in biaxial loading is analyzed in order to understand and simulate the localization pattern observed in an expanding hemisphere experiment. First, a criterion for the activation of slip bands is formulated in the form of a critical hardening coefficient: it is particularized to the Von Mises and Tresca surfaces. In the Von Mises case, the criterion gives a strongly negative hardening coefficient in biaxial loading conditions different from the ones of plane strain. In the Tresca case, the criterion is fulfilled for a perfectly plastic material in uniaxial and biaxial loading; besides, in equi-biaxial loading, two possible orientations for slip bands are exhibited; this can be understood, with a few approximations, by the existence of a vertex point on the Tresca yield surface which give additive degrees of freedom for the direction of the plastic strain rate. Second, the development of localization in the loading conditions met in an expanding hemisphere experiment is simulated using both plasticity yield surfaces; whereas the Von Mises simulation does not localize, the Tresca simulation exhibits a pattern composed of a network of shear bands of different orientations; this pattern is not far from the pattern observed experimentally.  相似文献   

13.
This paper contains an exact solution for the stresses arising from torsion of an elastic circular cylinder with a prolate spheroidal cavity. The solution, which is represented as a combination of a solution that is regular outside the cavity and a solution regular in the solid infinite circular cylinder, is deduced with the aid of a harmonic displacement potential. The two harmonic functions needed are given by simple expressions referred to cylindrical and prolate spheroidal coordinates. The boundary conditions on the surfaces of the cylinder and of the cavity are satisfied by using the relations between cylindrical and prolate spheroidal harmonics. Numerical results are presented for different shapes and sizes of the cavity, and the ensuing stress distribution in the neighborhood of the cavity is illustrated graphically.  相似文献   

14.
Based on the assumption that the material satisfies the condition of isotropic hardening for either a von Mises or a Tresca material, finite-strain theories are derived for solid circular torsion members for the conditions that the inelastic deformations are either time independent or time dependent. In the latter case, both creep and relaxation theories are derived. At room temperature the theories are evaluated for each of eight metals using finite-strain data from tension, compression and torsion members. Of the six metals that are found to satisfy the condition required for the isotropic-hardening model, two are von Mises, one is Tresca, and the other three are between von Mises and Tresca. At elevated temperatures, the theories are evaluated for each of five of the latter six metals, using data from tension and torsion members. Material properties obtained from the tension specimens are used to predict creep and relaxation curves for the torsion members. Contrary to the results at room temperature, creep curves for the torsion members do not all fall within the region bounded by von Mises and Tresca theories. In the case of relaxation, either excellent agreement is obtained between the von Mises strain-hardening theory and experimental data or the theory is conservative.  相似文献   

15.
应用双剪应力屈服准则求解某些塑性力学问题   总被引:27,自引:0,他引:27  
黄文彬  曾国平 《力学学报》1989,21(2):249-256
  相似文献   

16.
An equimodulus surface is introduced and the subsequent yield surface after large finite shear prestraining is experimentally investogated. Fully annealed, thin-walled copper tubular specimens were subjected to large torsional loading and partial unloading; strain gages were carefully mounted on the specimen after the application of pure shear loading. Specimens were then subjected to various combined tension-torsion loadings. Influences of he von Mises and Tresca equivalent offset strains on the subsequent yield surfaces are studied. On examining the experimental results reported in this article, it was found that the smaller the offset strains, the more distorted are the subsequent yield surfaces. At the torsional preloading point, a rounded corner was developed, whereas in the region opposite to the preloading point, the subsequent yield surface was flattened. When large von Mises offset strains were used, the corresponding subsequent yield surfaces passed through the von Mises loading surface. But this was not the case when Tresca offset strains were used. The subsequent yield surface determined by the back extrapolation method was almost completely outside the von Mises loading surface. On the other hand, the subsequent yield surface determined by the back extrapolation method was close to the Tresca loading surface. It is also found that the equimodulus surface is distorted and cannot simply be described by the combined kinematic and isotropic hardening rule.  相似文献   

17.
Limit analysis of edge-restrained rigid, perfectly plastic shallow spherical shells under external pressure is considered. A numerical solution, based on the von Mises yield criterion, is shown to be in good agreement with existing approximate solutions based on the Tresca yield criterion.  相似文献   

18.
考虑拉压强度差效应的厚壁圆筒承载能力分析   总被引:2,自引:1,他引:2  
应用双剪统一强度理论,考虑材料的拉压异性和同性,推导了在内压力和轴力联合作用下的厚壁圆筒的塑性极限载荷表达式.在该表达式中,当反映中间主应力效应的系数取不同的值时,就能得到按Tresca屈服准则、线性逼近的Mises屈服准则和双剪应力屈服准则的计算结果,并且绘制了在相应准则下的极限应力线图.从而可知:在三维应力状态下,应用该理论,可以获得极限载荷分析的精确解;极限载荷线图与三种屈服准则的屈服曲线是相吻合的;计算的结果可以用于拉压异性和同性的材料,为工程应用提供了理论依据.  相似文献   

19.
IntroductionInrecentyears,theresearchesoncavitationandcatastropheofacavityhavesuppliedanewmethodforinvestigatingthemechanicso...  相似文献   

20.
内压作用下弯管的塑性极限载荷分析   总被引:1,自引:0,他引:1  
在变壁厚椭圆截面弯管应力分析的基础上,运用Tresca 和von Mises 屈服准则,对承受内压作用的钢制弯管进行了极限载荷分析,推导出考虑弯管截面壁厚变化和弯管椭圆度的变壁厚椭圆弯管的塑性极限压力计算式. 弯管的极限载荷随着弯管的壁厚和弯管的椭圆度的不同而变化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号