首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We investigate the stability problem related to the basic slip flows of liquids in plane microchannels by using the Navier slip concept. We found that if the Navier slip parameter (Ns) equals 0.06, the critical Reynolds number (Recr) becomes 213.6. There are short-wave instabilities, however, when we further increase Ns to 0.07 or 0.08. Recr becomes 132.9 for Ns=0.08 if we neglect the short-wave instability. To cite this article: A.K.-H. Chu, C. R. Mecanique 332 (2004).  相似文献   

3.
4.
5.
6.
Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45° and 90° turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (H¯c=hc/H)) by varying Reynolds number (ReDh). Another variable parameter was the ratio of the baffle height to the channel height (H¯b=hb/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (ReDh) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for θ = 45° and θ = 90° were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel.  相似文献   

7.
A numerical study is conducted in order to determine the influence of a vertical magnetic field, the Reynolds number and a temperature stratification on the instabilities occurring in the Hartmann flow heated from below. For Pr=0.001 and Ha?2.5, the results show that the vertical magnetic field has a stabilizing effect on both transverse oscillatory travelling waves (T) and longitudinal stationary rolls (L). The temperature stratification is responsible of a destabilization of the transverse (T) modes and the appearance of longitudinal (L) modes non-existent for the isothermal Hartmann flow. Moreover, the extent of the domains of Re where the transverse modes (T) prevail is found to narrow when Ha increases and to widen when Ra increases for a given value of Ha. On the other hand, for the (L) modes, the extent of the domains of Re where they prevail increases when Ha grows. To cite this article: W. Fakhfakh et al., C. R. Mecanique 334 (2006).  相似文献   

8.
An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×103, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×104) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).  相似文献   

9.
10.
11.
12.
13.
This article presents the high-order algorithms that we have developed for large-eddy simulation of incompressible flows, and the results that have been obtained for the 3D turbulent wake of a cylinder at a Reynolds number of Re=3900. To cite this article: R. Pasquetti, C. R. Mecanique 333 (2005).  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号