首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Fluorine presents among its radioactive isotopes fluorine-18, that decays with a 109 min half-life and a β+ emission, allowing external detection of the two coincident γ photons obtained after annihilation. Production techniques (medical cyclotron), radiochemical reactions for isotope incorporation in radiopharmaceuticals and development of specific detection cameras (positron emission tomographs) allowed development of a vast investigation field in medical imaging.Applications of PET in oncology ([18F]fluorodeoxyglucose, FDG) largely improved detection and management of cancers; tracer molecules labelled with fluorine-18 also allow fruitful researches in molecular imaging.  相似文献   

2.
Peptides are often ideal ligands for diagnostic molecular imaging due to their ease of synthesis and tuneable targeting properties. However, labelling unmodified peptides with 18F for positron emission tomography (PET) imaging presents a number of challenges. Here we show the combination of photoactivated sodium decatungstate and [18F]‐N‐fluorobenzenesulfonimide effects site‐selective 18F‐fluorination at the branched position in leucine residues in unprotected and unaltered peptides. This streamlined process provides a means to directly convert native peptides into PET imaging agents under mild aqueous conditions, enabling rapid discovery and development of peptide‐based molecular imaging tools.  相似文献   

3.
Peptides are often ideal ligands for diagnostic molecular imaging due to their ease of synthesis and tuneable targeting properties. However, labelling unmodified peptides with 18F for positron emission tomography (PET) imaging presents a number of challenges. Here we show the combination of photoactivated sodium decatungstate and [18F]‐N‐fluorobenzenesulfonimide effects site‐selective 18F‐fluorination at the branched position in leucine residues in unprotected and unaltered peptides. This streamlined process provides a means to directly convert native peptides into PET imaging agents under mild aqueous conditions, enabling rapid discovery and development of peptide‐based molecular imaging tools.  相似文献   

4.
Potential of electrophilic and nucleophilic methods of radiofluorination in the synthesis of fluorine-18-labeled fluorinated amino acid analogs, radiotracers for positron emission tomography (PET), is considered. The synthesis of 6-L-[18F]FDOPA ((S)-2-amino-3-(6-[18F]fluoro-3,4-dihydroxyphenyl)propionic acid) was used as an example to discuss new elaborations in this field directed on both the improvement of already existing methods and the development of fundamentally new approaches to the introduction of a fluorine-18 label into the nonactivated aromatic ring of amino acids using nucleophilic methods.  相似文献   

5.
The first organomediated asymmetric 18F fluorination has been accomplished using a chiral imidazolidinone and [18F]N‐fluorobenzenesulfonimide. The method provides access to enantioenriched 18F‐labeled α‐fluoroaldehydes (>90 % ee), which are versatile chiral 18F synthons for the synthesis of radiotracers. The utility of this process is demonstrated with the synthesis of the PET (positron emission tomography) tracer (2S,4S)‐4‐[18F]fluoroglutamic acid.  相似文献   

6.
The purpose of this study was to investigate in vivo biodistribution and potential target tissues of pancreatic-derived factor (PANDER, FAM3B) using 18F-labeled PANDER positron emission tomography (PET) imaging. 18F-Labeled PANDER ([18F]FB-PANDER) was prepared by reaction of PANDER and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). The uncorrected radiochemical yield of [18F]FB-PANDER was 15.2 ± 3.4 % (n = 4) based on [18F]SFB within the total synthesis time of 30 min. In vivo biodistribution of [18F]FB-PANDER in nomal mice and PET imaging demonstrated high uptake of the radiotracer in urinary bladder, kidneys and gall bladder, and fast clearance from kidneys and gall bladder. Also, moderate uptake in blood, liver, pancreas, small intestine and bone, low uptake in brain and muscle, and almost no uptake in S180 fibrosarcoma tissue were observed. The results indicated that the major excretion route of PANDER was through renal-urinary bladder and biliary system, and no obvious binding targets of PANDER in the main organs and S180 fibrosarcoma tissue were found.  相似文献   

7.
Efficient aliphatic radiofluorination in a mixed organic solvent system was investigated. This method obviates the time-consuming [18F]fluoride drying step routinely required in the preparation of most fluorine-18 positron emission tomography (PET) radiotracers. The [18F]fluoride ions eluted from a QMA (quaternary ammonium anion exchange) cartridge with phase transfer agents were directly mixed in various organic solvents for subsequent radiofluorination. Herein, we report the azeotropic drying-free radiofluorination of aliphatic substrates and demonstrate the viability of hydrated [18F]fluoride ions in a mixed organic solvent system for obtaining useful radiochemical yields (RCYs). This practical and simple method has demonstrated general applicability to the production of established PET tracers as well as to the rapid assessment and chemical optimization of early-stage potential radiotracers.  相似文献   

8.
A positron emission tomography (PET) tracer composed of 18F‐labeled maltohexaose (MH18F) can image bacteria in vivo with a sensitivity and specificity that are orders of magnitude higher than those of fluorodeoxyglucose (18FDG). MH18F can detect early‐stage infections composed of as few as 105 E. coli colony‐forming units (CFUs), and can identify drug resistance in bacteria in vivo. MH18F has the potential to improve the diagnosis of bacterial infections given its unique combination of high specificity and sensitivity for bacteria.  相似文献   

9.
Recently, we demonstrated the potential of a [18F]‐trimethylammonium BODIPY dye for cardiac imaging. This is the first example of the use of the [18F]‐ammonium BODIPY dye for positron emission tomography (PET) myocardial perfusion imaging (MPI). In this report, we extend our study to other ammonium BODIPY dyes with different nitrogen substituents. These novel ammonium BODIPY dyes were successfully prepared and radiolabeled by the SnCl4‐assisted 18F–19F isotopic exchange method. The microPET results and the biodistribution data reveal that nitrogen substituent changes have a significant effect on the in vivo and pharmacological properties of the tracers. Of the novel [18F]‐ammonium BODIPY dyes prepared in this work, the [18F]‐dimethylethylammonium BODIPY is superior in terms of myocardium uptake and PET imaging contrast. These results support our hypothesis that the ammonium BODIPY dyes have a great potential for use as PET/optical dual‐modality MPI probes.  相似文献   

10.
Azido 18F‐arenes are important and versatile building blocks for the radiolabeling of biomolecules via Huisgen cycloaddition (“click chemistry”) for positron emission tomography (PET). However, routine access to such clickable agents is challenged by inefficient and/or poorly defined multistep radiochemical approaches. A high‐yielding direct radiofluorination for azido 18F‐arenes was achieved through the development of an ortho‐oxygen‐stabilized iodonium derivative (OID). This OID strategy addresses an unmet need for a reliable azido 18F‐arene clickable agent for bioconjugation reactions. A ssDNA aptamer was radiolabeled with this agent and visualized in a xenograft mouse model of human colon cancer by PET, which demonstrates that this OID approach is a convenient and highly efficient way of labeling and tracking biomolecules.  相似文献   

11.
Glycogen synthase kinase-3 α/β is involved in dysregulation of neuronal tau protein in Alzheimer's disease (AD). There is an unmet clinical need for a blood-brain barrier (BBB) permeable positron emission tomography (PET) probe for imaging of GSK-3α/β in the brain to understand the pathogenesis of AD. Herein, we synthesized two PET probes, [18F]F-CNBI and [18F]F-CNPIFE, and evaluated their BBB permeability and affinity towards GSK-3α/β. [19F]F-CNPIFE showed higher in-vitro binding towards GSK-3α/β (IC50=19.4±2.5 nM; n=3, for GSK-3α, IC50=19.4±3.8 nM; n=3, for GSK-3β) compared to [19F]F-CNBI (IC50=107.6±26.0 nM; n=4, for GSK-3α, IC50=105.3±18.2 nM; n=3, for GSK-3β). [18F]F-CNPIFE showed 9.5-fold higher brain uptake than [18F]F-CNBI, in normal FVB/NJ mice, which was increased by additional 1.5-fold on co-administration of [19F]F-CNPIFE with respect to [18F]F-CNBI. Overall, [18F]F-CNPIFE is a promising PET probe for GSK-3α/β imaging and warrants further evaluation in an AD mouse model.  相似文献   

12.
Positron emission tomography (PET) is a molecular imaging technology that provides quantitative information about function and metabolism in biological processes in vivo for disease diagnosis and therapy assessment. The broad application and rapid advances of PET has led to an increased demand for new radiochemical methods to synthesize highly specific molecules bearing positron‐emitting radionuclides. This Review provides an overview of commonly used labeling reactions through examples of clinically relevant PET tracers and highlights the most recent developments and breakthroughs over the past decade, with a focus on 11C, 18F, 13N, and 15O.  相似文献   

13.
Strained tricyclic ring systems such as epoxides are rarely used as precursors for the introduction of anionic fluorine-18 into organic compounds intended for positron emission tomography (PET). Here we report the alpha selective ring opening of epoxides for the introduction of fluorine-18 into small as well as larger biomolecules via 1- and 2-step protocols. [18F]fluoromisonidazole ([18F]MISO), a tracer for hypoxia imaging, and the tumor targeting peptide Tyr3-octreotate (TATE) were radiolabeled using epoxide opening reactions. In the latter case, the new prosthetic labeling synthon 4-(3-[18F]fluoro-2-hydroxypropoxy)benzaldehyde ([18F]FPB) has been used for 18F-introduction.  相似文献   

14.
Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, β-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E’s biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.  相似文献   

15.
Introduction: Benzodiazepines, including temazepam are described as TSPO antagonists. In fact, TSPO was initially described as a peripheral benzodiazepine receptor (PBR) with a secondary binding site for diazepam. TSPO is a potential imaging target of neuroinflammation because there is an amplification of the expression of this receptor. Objectives: Herein, we developed a novel fluorinated benzodiazepine ligand, [18F]Fluoroethyltemazepam ([18F]F-FETEM), for positron emission tomography (PET) imaging of translocator protein (18 kDa). Methods: [18F]F-FETEM was radiolabelled with an automated synthesizer via a one-pot procedure. We conducted a [18F]F-aliphatic nucleophilic substitution of a tosylated precursor followed by purification on C18 and Alumina N SPE cartridges. Quality control tests was also carried out. Results: We obtained 2.0–3.0% decay-uncorrected radiochemical activity yield (3.7% decay-corrected) within the whole synthesis time about 33 min. The radiochemical purity of [18F]F-FETEM was over 90% by TLC analysis. Conclusions: This automated procedure may be used as basis for future production of [18F]F-FETEM for preclinical PET imaging studies.  相似文献   

16.
Fluorine-18 is the most utilized radioisotope in positron emission tomography (PET), but the wide application of fluorine-18 radiopharmaceuticals is hindered by its challenging labelling conditions. As such, many potentially important radiotracers remain underutilized. Herein, we describe the use of [18F]ethenesulfonyl fluoride (ESF) as a novel radiofluoride relay reagent that allows radiofluorination reactions to be performed in minimally equipped satellite nuclear medicine centres. [18F]ESF has a simple and reliable production route and can be stored on inert cartridges. The cartridges can then be shipped remotely and the trapped [18F]ESF can be liberated by simple solvent elution. We have tested 18 radiolabelling precursors, inclusive of model and clinically used structures, and most precursors have demonstrated comparable radiofluorination efficiencies to those obtained using a conventionally dried [18F]fluoride source.  相似文献   

17.
Since many molecules bearing quinoline-5,8-dione or fused 1,4-quinone moieties possess a wide spectrum of biological activities, efficient methods for incorporation of fluorine-18 (F-18) into quinoline-5,8-diones have received considerable attention in positron emission tomography (PET) molecular imaging studies. In this paper, we describe an efficient synthetic route for the regioselective preparation of fluoropropyl-substituted quinoline-5,8-diones on the C3, C4, and C6 positions by tert-alcohol media fluorination, followed by oxidative demethylation of the corresponding dimethoxy compound using N-bromosuccinimide (NBS) in the presence of catalytic amounts of sulfuric acid. Moreover, F-18 labeled [18F]fluoropropylquinoline-5,8-diones [18F]21-23 were prepared from the corresponding mesylate precursors by a method of rapid and efficient one-pot, two-step reactions: radiofluorination using TBA [18F]F generated under no-carrier-added (NCA) conditions; oxidative demethylation, resulting in a 45% radiochemical yield of [18F]21-23 (decay-corrected) with a total synthesis time (including HPLC purification) of 75 min and high radiochemical purity (>99%), as well as high specific activity (∼230 GBq/μmol).  相似文献   

18.
采用简便有效的方法,制备了生物兼容性强、放射性标记羟基磷灰石(HAp)纳米粒子的正电子发射计算机断层显像(PET)纳米探针。在合成HAp纳米粒子的过程中,放射性的~(18)F作为掺杂剂,占据HAp晶格中羟基位置,在短时间内牢固地标记到HAp上。~(18)F不仅标记在纳米粒子的表面,而且还通过强的化学键标记在纳米颗粒的内部。以达到提高标记量并防止辐射泄漏的目的。设计的高标记量的放射性纳米探针应用于动物实验并靶向到达脏器器官。  相似文献   

19.
MerTK (Mer tyrosine kinase), a receptor tyrosine kinase, is ectopically or aberrantly expressed in numerous human hematologic and solid malignancies. Although a variety of MerTK targeting therapies are being developed to enhance outcomes for patients with various cancers, the sensitivity of tumors to MerTK suppression may not be uniform due to the heterogeneity of solid tumors and different tumor stages. In this report, we develop a series of radiolabeled agents as potential MerTK PET (positron emission tomography) agents. In our initial in vivo evaluation, [18F]-MerTK-6 showed prominent uptake rate (4.79 ± 0.24%ID/g) in B16F10 tumor-bearing mice. The tumor to muscle ratio reached 1.86 and 3.09 at 0.5 and 2 h post-injection, respectively. In summary, [18F]-MerTK-6 is a promising PET agent for MerTK imaging and is worth further evaluation in future studies.  相似文献   

20.
Interest in fluorinated sugars labelled with {18F} positron-emitting radionuclides as tracers for the measurement of glucose utilization in man by positron emission tomography1 (PET) and in animals by autoradiography2 has resulted in the development of numerous syntheses3-11 of 2-deoxy-2-fluoro-D-glucose (3a). Some of these syntheses are not practical because the carbohydrate substrates for the fluorination reactions are not readily available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号