首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slow positron beam is quite useful for non-destructive material research. At the Electrotechnical Laboratory (ETL), an intense slow positron beam line has been constructed by exploiting an electron linac in order to carry out various experiments on material analysis. The beam line can generate pulsed positron beams of variable energy and variable pulse period. Various capabilities of the intense pulsed positron beam is presented, based on the experience at the ETL, and the prospect for the future is discussed.  相似文献   

2.
A new pulsed mono-energetic slow positron beam as well as the conventional positron annihilation lifetime spectroscopy (PALS) have been applied to study the sub-surface and the bulk of epoxy polymer. Significant changes of o-Ps parameters were found at a short distance from the surface. The lifetime of o-Ps was observed to decrease with increasing the positron implantation depth, while its intensity increased. The temperature effect on o-Ps parameters at sub-surface was also investigated. The glass transition temperature for the sub-surface was lower than that for the bulk. Furthermore, the thermal expansion coefficient of the sub-surface was found smaller than that of the bulk.  相似文献   

3.
Langmuir–Blodgett films were studied using a variable energy slow-positron beam. We measured the energy spectra of positron annihilation radiation for Cd and Mg eicosanoid films and obtained the V- and S-parameters as a function of the incident positron energy, E. In the V-E curves of Cd eicosanoid films, there were dips at the positron energy whose mean implantation depth corresponding to the first and second Cd2+ layers from the surface. These dips are interpreted as the result of inhibition of Ps formation by the Cd2+ ions. The S-parameter was found to be sensitive to chemical composition of the film and also to possible structural change due to heat treatment. Our results suggest that positron beams provide valuable information about the microstructure of the Langmuir-Blodgett films.  相似文献   

4.
Spin-polarized low-energy positrons were considered as useful probes for studying electron spin states of both surface and bulk materials. Due to the spin-dependent interactions between electrons and positrons, the formation of positronium (Ps), an electron-positron bound system, can be distinguished from different electron spin states. Recently, a positron source of 18F has been developed for a spin polarized slow positron beam at the institute of physical and chemical research (RIKEN). The design of an electrostatic positron beam will be discussed in conjunction with a spin rotator.  相似文献   

5.
Focused ion beam milling is used to fabricate micron and submicron scale patterns in sintered silica colloidal crystal films. Rectangular cavities with both solid and porous boundaries, fluidic channels, and isolation of a small number of packed spheres are patterned. The ion beam can pattern sintered films of individual submicron size spheres and create patterns that cover up to 40 mum in less than 15 min. The experiments in this work indicate that the amount of redeposited material on the surface of a milled cavity determines whether the surface will be porous or solid. FIB direct patterning has applications in colloidal crystal based lithography, integrated photonic devices, optofluidic devices, and micrototal-analytical systems.  相似文献   

6.
Mixed ammonia-water vapor postsynthesis treatment provides a simple and convenient method for stabilizing mesostructured silica films. X-ray diffraction, transmission electron microscopy, nitrogen adsorption/desorption, and solid-state NMR (13C, 29Si) were applied to study the effects of mixed ammonia-water vapor at 90 degrees C on the mesostructure of the films. An increased cross-linking of the silica network was observed. Subsequent calcination of the silica films was seen to cause a bimodal pore-size distribution, with an accompanying increase in the volume and surface area ratios of the primary (d = 3 nm) to secondary (d = 5-30 nm) pores. Additionally, mixed ammonia-water treatment was observed to cause a narrowing of the primary pore-size distribution. These findings have implications for thin film based applications and devices, such as sensors, membranes, or surfaces for heterogeneous catalysis.  相似文献   

7.
8.
Correlated measurements of the individual positron lifetimes (so-called positron ages) and of the Doppler shift of the 2-annihilation photon energy (Age-Momentum Correlation, AMOC) allow the evolution of the positron states to be observed in the time domain. The AMOC technique is thus especially useful when chemical reactions of positronium induce transitions between positron states. The full information contained in the AMOC data may be extracted from the two-dimensional AMOC histogramme, the so-called AMOC relief, by fitting a suitable two-dimensional model function. In this way quantitative information on the spin conversion of positronium by a paramagnetic radical in the systems HTEMPO/methanol and HTEMPO/benzene and on the formation of positron bound states in aqueous solutions of various sodium halides has been deduced.  相似文献   

9.
The 3D-hexagonal mesoporous films are used as templates to grow uniform silver nanoparticles. The grafting of hydrophobic groups at the pore surface, significantly slows down the silver ion diffusion, anchoring small silver clusters in micropores and leading to organized domains of silver particles in mesopores with a narrow size distribution.  相似文献   

10.
Structure-related adsorption characteristics of ordered mesoporous silicas with spherical particles were studied depending on the conditions of their synthesis, including pH of the medium, the type of the alcohol, and the concentrations of the initial components of micelle solutions. The special features of the template synthesis of mesoporous silica in large silica gel pores were studied. The synthesized silicas were characterized by low-temperature nitrogen sorption-desorption, X-ray diffraction, and scanning electron microscopy measurements.  相似文献   

11.
Alkyl glycosides were used as templating surfactants in the sol–gel processing of thin silica films. The sols were made from a prehydrolyzed silicate solution with the addition of a glucoside or a maltoside surfactant. The sol–gel–xerogel transitions and the silica–sugar interactions were studied by IR ATR spectroscopy. The siloxane condensation rate in the silica/glycoside sol was considerably reduced compared to a pure silica system due to hydrogen bonding interactions between the silanols and the sugar head groups. Thin films were deposited on silicon wafers and characterized by IR transmission, X-ray diffraction and TEM analysis. The size of the sugar head group had a large influence on the type of the mesophases formed. The use of the glucoside surfactant only resulted in temperature unstable lamellar phases, whereas the maltosides at low concentrations assembled in curved mesophases that were stable to template removal by extraction or calcination.  相似文献   

12.
Polymers including chromophores, which can be switched by light, have been studied extensively during the last years due to a host of potential applications which arise from the marked changes in physical properties on switching. Even though there is clear evidence that the free volume has a significant influence on the isomerization kinetics, the question of free volume changes on switching was only addressed recently. Using a pulsed low‐energy positron beam the ortho‐positronium lifetime τ3 was taken as a very sensitive free volume probe, and no change in free volume was detected on isomerization in an azobenzene‐polymethylmethacrylate (PMMA) copolymer containing about 8 wt % of the azobenzene moiety. Here, we report for the first time on free volume changes in an azobenzene‐PMMA blend with an azobenzene moiety concentration as high as 40 wt %. Using the same pulsed low‐energy positron beam, small but significant changes of τ3 were observed between the structurally relaxed dark and the UV‐illuminated states suggesting a decrease in free volume of the order of 10%. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
Two kinds of porphyrin-doped silica films with mesoporous structures were fabricated using evaporation-introduced self-assembly approach and examined for chemosensor applications to detect explosive compounds such as 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB). All synthesized silica films showed high fluorescence quenching sensitivity toward the vapors of TNT, DNT, and NB but is strongly dependent on pore structure. The silica film with three dimensional pore structure exhibits the highest quenching efficiency close to the quenching efficiency reported for emissive conjugated polymers, indicating these kinds of mesostructured composites are potentially useful chemosensory materials for rapidly detecting trace explosives. The preparation conditions, the structures of the resulting films, their sensing performances, and the fluorescence quenching mechanism were discussed in this paper.  相似文献   

14.
Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.  相似文献   

15.
We studied the formation mechanism of hierarchical mesoporous silica nanoparticles with a wrinkle structure (wrinkled silica nanoparticles, WSNs), and a method for substructure control of silica nanoparticles was proposed. We confirmed that WSNs were generated in the bicontinuous microemulsion phase of the Winsor III system. By using the phase behavior of the Winsor III system, which depends on the water-surfactant-oil mixing ratio, and by adding various cosolvents, we could precisely control the structure of silica nanoparticles from the mesoporous to the wrinkle form; furthermore, we could control the interwrinkle distance.  相似文献   

16.
Near-critical CO2 in mesoporous silica studied by in situ FTIR spectroscopy   总被引:2,自引:0,他引:2  
Attenuated total reflection Fourier transform infrared spectroscopy was used to correlate the band shift of the nu2 vibrational band of carbon dioxide with the density of the fluid. Upon adsorption of CO2 on mesoporous silica and a nonporous SiO2 film, additional bands were detected due to interactions of CO2 with SiO2. Near the saturation pressure for the porous samples, the absorbance of the nu2 band increased strongly, which was concluded to be caused by liquidlike CO2 inside the pores. Integration of single-beam-sample-reference spectra between bulk CO2 and CO2 adsorbing on the mesoporous silica coated on one part of the internal reflection element revealed excess adsorption type isotherms with sharp maxima at 21 degrees C. A flatter curve shape could be observed at 25 degrees C, which allowed estimating the pore critical temperature. Moreover, the density of the fluid inside and outside the pores could be compared. Over the investigated ranges of pressure, temperature, and pore size, the results evidenced that the CO2 density was always higher in the silica pores than in the bulk, even under supercritical conditions. This has important consequences on the pressure dependence of dissolution power and diffusivity of fluids in mesoporous solids. An overview is given on the influences of fluid phase behavior in the bulk and in the pores at various conditions on solubility and diffusivity.  相似文献   

17.
Preparation of mesoporous materials in a thin film geometry was first reported in 1996. Recently, improvement of the preparation methods yielded stable films with well-defined symmetries, controlled pore orientation, continuity and film thickness. The ability to tailor film properties is important for their utilization in applications ranging from catalysis to microelectronics, where morphological control in the meso-domain is vital.  相似文献   

18.
Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.  相似文献   

19.
The effect of damage on 1.54 μm luminescence for 30 keV-Er-implanted SiO2 films has been studied by positron annihilation and cathodoluminescence. It was found that S-parameter in the films decreased after implantation, indicating the suppression of positronium formation. The luminescence appeared with the recovery of the S-parameter after 600°C annealing. The intensity reached a maximum at 900°C annealing whereas the S-parameter did not change significantly. It seems that most damages recover at 600°C and thereafter Er ions transform to an optically active state at 900°C.  相似文献   

20.
Single molecule spectroscopy is applied in studies of diffusion and surface adsorption in sol-gel-derived mesoporous silica thin films. Mesoporous films are obtained by spin casting surfactant-templated sols onto glass substrates. Small-angle X-ray diffraction results are consistent with hexagonally ordered mesophases in as-synthesized (i.e., surfactant-containing) films. Upon calcination, a 30% contraction and disordering of these structures occurs. Nile Red is used as a fluorescent probe of both the as-synthesized and calcined films. It is loaded into the samples at subnanomolar levels either prior to spin casting or after calcination. Fluorescence imaging and single-point fluorescence time transients show the dye molecules to be relatively mobile in the as-synthesized samples. In contrast, the molecules appear entrapped at fixed locations in dry calcined films. In calcined films rehydrated under high humidity conditions, the Nile Red molecules again become mobile. Time transients obtained from the as-synthesized and rehydrated samples provide clear evidence for frequent reversible adsorption of the dye to the silica surfaces. Autocorrelations of the time transients provide quantitative data on the mean diffusion coefficients (D = 2.4 x 10(-10) and 2.6 x 10(-10) cm2/s) and mean desorption times (1/k = 25 and 40 s) for the as-synthesized and rehydrated films, respectively. The results prove both water and surfactant play important roles in governing matrix interactions and mass transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号