首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Block copolymers based on poly(ethylene oxide) (PEO) and poly(ethylene imine) (PEI) are efficient catalysts/templates for the formation of uniform silica nanoparticles. Addition of tetraethylorthosilicate to a solution of PEO–PEI or PEI–PEO–PEI block copolymers results in the formation of silica particles with a diameter of ca. 30 nm and narrow size distribution. The particles precipitated with the diblock copolymers can be redispersed in water after isolation as individual nanoparticles. Evidently, block copolymers based on PEO and PEI serve as excellent templates for the biomimetic and “soft” synthesis of silica nanoparticles.
Figure
TOC graphic  相似文献   

2.
Polylactide (PLA) is a biodegradable polyester recognized for its potential use as a biomedical material. Poly(ethylene oxide) (PEO) and copolymers based on PEO and poly(propylene oxide) (PPO) are biocompatible polyethers widely applied in the biomedical field, particularly as macromolecular nonionic surfactants. In this work, PLA blocks were attached to the PEO and to the PEO and PPO-based triblock copolymer PEO–PPO–PEO, through ring-opening polymerization of racemic lactide (rac-LA) to obtain the amphiphilic triblock PLA–PEO–PLA and pentablock PLA–PEO–PPO–PEO–PLA copolymers containing hydrophilic/hydrophobic blocks with variable block mass ratios. The copolymers were evaluated for chemical composition, molar mass, and thermal properties, and they were used to prepare self-assemble aggregates in water from tetrahydrofuran polymer solutions. The combination of scattering light experiments and microscopy techniques revealed the spherical morphology of the aggregates with diameters around 180–200 nm, which comprises a hydrophobic PLA core and a hydrophilic polyether shell. The aggregates are nontoxic to human cervical cancer cell line — HeLa cells, as determined by MTS assay, and the aggregates are potential candidates to be applied in the encapsulation of hydrophobic compounds. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2203–2213  相似文献   

3.
Well defined amphiphilic block copolymers containing a polydimethyl siloxane (PDMS) and a poly(ethylene oxide) block (PEO) were synthesized by ring opening polymerization of hexamethylcyclotrisiloxane, followed by chain extension with a PEO block of a defined length. These amphiphilic molecules were used as templates in a solvent-evaporation driven synthesis approach to self-assembled mesostructured silica films. Thin films and powders were prepared, and the resulting material was characterized by X-ray diffraction, transmission electron microscopy, and 29Si and 13C solid state NMR. The behavior of the PEO-b-PDMS block copolymer during heat treatment up to 600°C was followed in detail by solid state NMR.  相似文献   

4.
The adsorption of BAB-type triblock copolymers (B=poly(ethylene oxide); A=poly(propylene oxide)) from aqueous solution onto hydrophilic silica particles is described with particular reference to the role of the copolymer composition. The adsorbed amount and the layer thickness were determined by the standard depletion method and photon correlation spectroscopy, respectively. Snowtex-YL silica was used as the adsorbent. The results show an increase in the adsorbed amount with increasing molar masses of both PEO and PPO blocks. The adsorbed layer thickness is found to depend strongly on PEO block mass. Both these parameters (adsorbed amount and hydrodynamic layer thickness) show a maximum as a function of the mole fraction of the PPO block present in the copolymer. The conformation of the adsorbed layer is determined by the surface–copolymer interaction; principally by the interaction of the hydrophilic PEO block with the silica surface. A good qualitative agreement of the experimental results with theoretical predictions and self-consistent mean field calculations has been found.  相似文献   

5.
This article reviews the results of recent investigations on the macroscopic (phase behavior) and microscopic (microstructure) aspects of the role of cosolvents on the self-assembly of amphiphilic copolymers. A comprehensive account of the systematic studies performed in ternary isothermal systems consisting of a representative poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) block copolymer (Pluronic P105, EO37PO58EO37), water and a polar cosolvent (such as glycerol, propylene glycol or ethanol) is presented. The effect of cosolvents on the copolymer phase behavior is quantified in terms of the highest cosolvent/water ratio able to maintain the liquid crystalline structures. The effect of cosolvents on the microstructure of the lyotropic liquid crystals is quantified in terms of the degree of relative swelling per cosolvent content per copolymer content, a parameter that characterizes the given cosolvent and copolymer. The set of correlations on the cosolvent effects on the phase behavior or microstructure to the cosolvent physicochemical characteristics (such as octanol/water partition coefficient or solubility parameter) have led to the development of a hypothesis that accounts for the cosolvent effects on the self-assembly of PEO–PPO–PEO block copolymers and can be used to predict them. The rich structural diversity and the potential for a precise and convenient modification of the lyotropic liquid crystalline microstructure of the PEO–PPO–PEO block copolymers is discussed in comparison to the phase behavior of the low-molecular nonionic surfactants.  相似文献   

6.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

7.
嵌段共聚物傅里叶变换拉曼光谱   总被引:3,自引:0,他引:3  
王靖  郭晨  刘会洲 《分析化学》2001,29(1):35-37
用傅里叶变换拉曼光谱(FT-Paman)研究了聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)嵌段共聚物的无水样品,发现某些谱带对PEO0-PPO-PEO嵌段共聚物的结构和构象变化敏感,其中某些峰的相对强度的PPO/PEO比率和共聚物的构象有关,研究表明PluronicF68和F88具有一些反式构象的螺旋结构,PluronicP103(P123)是无规则结构,其它的嵌段共聚物处于二者之间.  相似文献   

8.
Amphiphilic BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH diblock and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐block‐PLA‐OH triblock copolymers incorporating thermoresponsive poly(ethylene oxide‐stat‐propylene oxide) (PEO‐stat‐PPO) blocks were prepared by ring‐opening polymerization of lactide (LA) initiated by macroinitiators formed from treating BuO‐(PEO‐stat‐PPO)‐OH and MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH with AlEt3. MeO‐PEO‐block‐(PEO‐stat‐PPO)‐OH was prepared by coupling MeO‐PEO‐OH and HO‐(PEO‐stat‐PPO)‐OH, followed by chromatographic purification. The cloud points of 0.2% aqueous solutions are between 36 and 46 °C for the diblock copolymers that contain a 50 wt % EO thermoresponsive block and 78 °C for the triblock copolymer that contains a 75 wt % EO thermoresponsive block. Variable temperature 1H NMR spectra recorded on D2O solutions of the diblock copolymers display no PLA resonances below the cloud point and fairly sharp PLA resonances above the cloud point, suggesting that desolvation of the thermoresponsive block increases the miscibility of the two blocks. Preliminary characterization of the micelles formed in aqueous solutions of BuO‐(PEO‐stat‐PPO)‐block‐PLA‐OH conducted using laser scanning confocal microscopy and pulsed gradient spin echo NMR point to significant changes in the size of the micellar aggregates as a function of temperature. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5156–5167, 2005  相似文献   

9.
This article reports thermoset blends of bisphenol A‐type epoxy resin (ER) and two amphiphilic four‐arm star‐shaped diblock copolymers based on hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly(propylene oxide) (PPO). 4,4′‐Methylenedianiline (MDA) was used as a curing agent. The first star‐shaped diblock copolymer with 70 wt % ethylene oxide (EO), denoted as (PPO‐PEO)4, consists of four PPO‐PEO diblock arms with PPO blocks attached on an ethylenediamine core; the second one with 40 wt % EO, denoted as (PEO‐PPO)4, contains four PEO‐PPO diblock arms with PEO blocks attached on an ethylenediamine core. The phase behavior, crystallization, and nanoscale structures were investigated by differential scanning calorimetry, transmission electron microscopy, and small‐angle X‐ray scattering. It was found that the MDA‐cured ER/(PPO‐PEO)4 blends are not macroscopically phase‐separated over the entire blend composition range. There exist, however, two microphases in the ER/(PPO‐PEO)4 blends. The PPO blocks form a separated microphase, whereas the ER and the PEO blocks, which are miscible, form another microphase. The ER/(PPO‐PEO)4 blends show composition‐dependent nanostructures on the order of 10?30 nm. The 80/20 ER/(PPO‐PEO)4 blend displays spherical PPO micelles uniformly dispersed in a continuous ER‐rich matrix. The 60/40 ER/(PPO‐PEO)4 blend displays a combined morphology of worm‐like micelles and spherical micelles with characteristic of a bicontinuous microphase structure. Macroscopic phase separation took place in the MDA‐cured ER/(PEO‐PPO)4 blends. The MDA‐cured ER/(PEO‐PPO)4 blends with (PEO‐PPO)4 content up to 50 wt % exhibit phase‐separated structures on the order of 0.5–1 μm. This can be considered to be due to the different EO content and block sequence of the (PEO‐PPO)4 copolymer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 975–985, 2006  相似文献   

10.
Herein, we present a simple method for producing nanoporous templates with a high degree of lateral ordering by self‐assembly of block copolymers. A key feature of this approach is control of the orientation of polymeric microdomains through the use of hydrophilic additives as structure directing agents. Incorporation of hydrophilic poly(ethylene oxide) (PEO) moieties into poly(styrene‐b‐methyl methacrylate) (PSt‐b‐PMMA) diblock copolymers gives vertical alignment of PMMA cylinders on the substrate after solvent annealing. Because of the miscibility between PEO and PMMA, PEO additives were selectively positioned within PMMA microdomains and by controlling the processing conditions, it was found that ordering of PSt‐b‐PMMA diblock copolymers could be achieved. The perpendicular orientation of PMMA cylinders was achieved by increasing the molecular size of the PEO additives leading to an increased hydrophilicity of the PMMA domains and consequently to control the orientation of microdomains in PSt‐b‐PMMA block copolymer thin films. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8041–8048, 2008  相似文献   

11.
A series of highly ordered mesoporous carbonaceous frameworks with diverse symmetries have been successfully synthesized by using phenolic resols as a carbon precursor and mixed amphiphilic surfactants of poly(ethylene oxide)‐b‐poly(propylene oxide)‐b‐poly(ethylene oxide) (PEO–PPO–PEO) and reverse PPO–PEO–PPO as templates by the strategy of evaporation‐induced organic–organic self‐assembly (EISA). The transformation of the ordered mesostructures from face‐centered (Fd m) to body‐centered cubic (Im m), then 2D hexagonal (P6mm), and eventually to cubic bicontinuous (Ia d) symmetry has been achieved by simply adjusting the ratio of triblock copolymers to resol precursor and the relative content of PEO–PPO–PEO copolymer F127, as confirmed by small‐angle X‐ray scattering (SAXS), transmission electron microscopy (TEM), and nitrogen‐sorption measurements. The blends of block copolymers can interact with resol precursors and tend to self‐assemble into cross‐linking micellar structures during the solvent‐evaporation process, which provides a suitable template for the construction of mesostructures. The assembly force comes from the hydrogen‐bonding interactions between organic mixed micelles and the resol‐precursor matrix. The BET surface area for the mesoporous carbonaceous samples calcined at 600 °C under nitrogen atmosphere is around 600 m2 g?1, and the pore size can be adjusted from 2.8 to 5.4 nm. An understanding of the organic–organic self‐assembly behavior in the mixed amphiphilic surfactant system would pave the way for the synthesis of mesoporous materials with controllable structures.  相似文献   

12.
The adsorption of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) onto silica from ethylammonium nitrate (a protic ionic liquid) has been investigated using colloid probe AFM force curve measurements. Steric repulsive forces were measured for PEO, confirming that PEO can compete with the ethylammonium cation and adsorb onto silica. The range of the repulsion increases with polymer molecular weight (e.g., from 1.4 nm for 0.01 wt % 10 kDa PEO to 40 nm for 0.01 wt % 300 kDa PEO) and with concentration (e.g., from 16 nm at 0.001 wt % to 78 nm at 0.4 wt % for 300 kDa PEO). Fits to the force curve data could not be obtained using standard models for a polymer brush, but excellent fits were obtained using the mushroom model, suggesting the adsorbed polymer films are compressed and relatively poorly solvated. No evidence for adsorption of 3.5 kDa PPO could be detected up to its solubility limit.  相似文献   

13.
Three amphiphilic poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) ethers triblock copolymers, denoted Pluronic L61 (PEO3PPO30PEO3), Pluronic L64 (PEO13PPO30PEO13), and Pluronic F68 (PEO79PPO30PEO79) were shown to aggregate and form micelles in ionic liquids (ILs) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6). The surface tension measurements revealed that the dissolution of the copolymers in ILs depressed the surface tension in a manner analogous to aqueous solutions. The cmcs of three triblock copolymers increase following the order of L61, L64, F68, suggesting that micellar formation was driven by solvatophobic effect. cmc and gamma cmc decrease with increasing temperature because hydrogen bonds between ILs and hydrophilic group of copolymers decrease and accordingly enhance the solvatophobic interaction. Micellar droplets of irregular shape with average size of 50 nm were observed. The thermodynamic parameters DeltaGm0, DeltaHm0, DeltaSm0 of the micellization of block copolymers in bmimBF4 and bmimPF6 were also calculated. It was revealed that the micellization is a process of entropy driving, which was further confirmed by isothermal titration calorimetry (ITC) measurements.  相似文献   

14.
The present paper discusses block copolymers with segments of either poly(ethylene oxide), poly(propylene oxide), or mixtures of poly(ethylene oxide)/poly(propylene oxide) and monodisperse aramide segments. The length of the polyether segments as well as the concentration of polyethylene oxide was varied. The synthesized copolymers were analyzed by DSC, FTIR, AFM and DMTA. In addition, the hydrophilicity was studied.The crystallinity of the monodisperse aramide segments was found to be high and the crystals, dispersed in the polyether phase, displayed a nano-ribbon morphology. The PEO segments were able to crystallize and this crystalline phase reduced the low-temperature flexibility. The PEO crystallinity and melting temperature could be strongly reduced by copolymerization with PPO segments. By using mixtures of PEO and PPO segments, hydrophilic copolymers with decent low-temperature properties could be obtained.  相似文献   

15.
Polyether(ester amide)s with poly(propylene oxide) (PPO) and monodisperse poly(hexamethylene terephthalamide) segments were synthesized, and their structure–property relations were investigated. The length of the amide segments was varied from diamide to tetraamide to hexaamide segments, and therefore the number hydrogen bonds per amide segment increased from two to four to six. PPO was end‐capped with 20 wt % ethylene oxide and had number‐average molecular weights of 1000, 2300, and 4000 g/mol (including ethylene oxide tips). The morphology of the poly‐ether(ester amide)s was studied with transmission electron microscopy and atomic force microscopy, the thermal properties were studied with differential scanning calorimetry and dynamic mechanical thermal analysis, and the tensile properties were studied with dumbbell samples. The elastic behavior of the block copolymers was investigated with tensile and compression tests. These segmented copolymers had two sharp transitions: a glass‐transition temperature (Tg) of the PEO–PPO–PEO phase [where PEO is poly(ethylene oxide)] and a melting temperature (Tm) of the amide segments. The amide segments crystallized in nanoribbons with a high aspect ratio 1000. Tm increased with the amide segment length and with decreasing PEO–PPO–PEO content (solvent effect). The modulus increased strongly with the amide content. This modulus increase could be described by the Halpin–Tsai fiber composite model. Increasing the amide segment length surprisingly also improved the elasticity. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4769–4781, 2006  相似文献   

16.
The dynamic dilational elasticity of adsorbed and spread films of PEO-PPO-PEO triblock copolymers at the air-water interface was measured as a function of surface pressure, surface age, and frequency. At low surface pressures (<10 mN/m), the surface viscoelasticity is identical to that of PEO homopolymer films. The results at higher surface pressures can be explained by the desorption of PPO segments from the interface and then mixing with PEO segments in water. Unlike some recent results, the spread and adsorbed films are not identical. Spread films exhibit a maximum real part of the dynamic surface elasticity of about 20 mN/m and probably begin to dissolve in water at surface pressures above 19 mN/m. However, the surface elasticity of the adsorbed films decreases beyond the maximum, indicating the formation of a loose surface structure.  相似文献   

17.
Butyl rubber‐poly(ethylene oxide) (PEO) graft copolymers with high PEO content (40–83 wt %) were synthesized by the functionalization and activation of the double bond moiety of butyl rubber containing high (7 mol %) isoprene content and subsequent reaction with PEO of different molecular weights from 750 to 5000 g/mol. The properties of these copolymers, along with other butyl rubber‐PEO graft copolymers were studied in films and in aqueous solution. Despite the high PEO content, films of the copolymers were quite stable in water with respect to mass loss and were capable of releasing an encapsulated probe molecule in a manner that was dependent on the PEO content. At high PEO content they were resistant to the adhesion and growth of C2C12 cells. Despite the resistance of films to dissolution, it was possible to prepare nanosized aqueous assemblies via a THF‐water exchange process and the sizes of the assemblies were tuned by their method of preparation. The assemblies were also able to encapsulate a probe molecule and were found to be nontoxic in vitro. Combined, this set of properties makes these new amphiphilic copolymers promising for a wide range of potential applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3383–3394  相似文献   

18.
Cloud points data on solutions of a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) abbreviated as EPE or Pluronics, such as P–65, P–84, P–85, P-105, L-64, and their mixtures at different salt (NaCl) concentrations in water are reported. The addition of NaCl to these mixed copolymers decreases cloud point, increases surface activity, and shifts micellization to lower concentration. In presence of NaCl, more surfactant is needed for demicellization of P105 micelles.  相似文献   

19.
Dynamic moduli of fumed silica suspensions in aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers and PEO homopolymers were measured as a function of surface coverage. Since the block copolymers and PEO are adsorbed on the silica surface through hydrogen bonding between the ether oxygen and the silanol group on the silica surface, the interaction between the silanol groups, which is dominant for the aggregation of silica particles, should be prohibited. Dynamic moduli in the silica suspensions were strongly related to the stability of the silica suspensions and the block copolymer, and the longest PEO portion was useful for stabilizing the silica particles. However, the PEO homopolymer did not support stability of the silica particles, suggesting that chain conformation of the PEO portion in the block copolymer is different from that for the PEO homopolymer. Copyright 2001 Academic Press.  相似文献   

20.
Interaction of urea with pluronic block copolymers by 1H NMR spectroscopy   总被引:1,自引:0,他引:1  
Solution 1H NMR techniques were used to characterize the interaction of urea with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The urea was established to interact selectively with the PEO blocks of the block copolymer, and the interaction sites were found not to change with increasing temperature. Such interactions influence the self-assembly properties of the block copolymer in solution by increasing the hydration of the block copolymers and stabilizing the gauche conformation of the PPO chain. Therefore, urea increases the critical micellization temperature (CMT) values of PEO-PPO-PEO copolymers, and the effect of urea on the CMT is more pronounced for copolymers with higher PEO contents and lower for those with increased contents of PPO segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号