首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We apply the classical Lie method and the nonclassical method to a generalized Ostrovsky equation (GOE) and to the integrable Vakhnenko equation (VE), which Vakhnenko and Parkes proved to be equivalent to the reduced Ostrovsky equation. Using a simple nonlinear ordinary differential equation, we find that for some polynomials of velocity, the GOE has abundant exact solutions expressible in terms of Jacobi elliptic functions and consequently has many solutions in the form of periodic waves, solitary waves, compactons, etc. The nonclassical method applied to the associated potential system for the VE yields solutions that arise from neither nonclassical symmetries of the VE nor potential symmetries. Some of these equations have interesting behavior such as “nonlinear superposition.”  相似文献   

2.
We obtain a bi-Hamiltonian formulation for the Ostrovsky–Vakhnenko (OV) equation using its higher order symmetry and a new transformation to the Caudrey–Dodd–Gibbon–Sawada–Kotera equation. Central to this derivation is the relation between Hamiltonian structures when dependent and independent variables are transformed.  相似文献   

3.
The Ostrovsky–Hunter equation provides a model for small-amplitude long waves in a rotating fluid of finite depth. It is a nonlinear evolution equation. In this paper we study the well-posedness for the Cauchy problem associated with this equation in presence of some weak dissipation effects.  相似文献   

4.
Approximate stationary solutions of the Ostrovsky equation describing long weakly nonlinear waves in a rotating liquid are constructed. These solutions may be regarded as a periodic sequence of arcs of parabolas containing Korteweg-de Vries solitons at the junctures. Results of numerical computations of the dynamics of the approximate solutions obtained from the nonstationary Ostrovsky equation are presented. It is found that, in the presence of negative dispersion, the shape of a stationary wave is well predicted by the approximate theory, whereas the calculated wave velocity differs slightly from the theoretical value. The stationary solutions in media with positive dispersion are evidently unstable (at least for sufficiently strong rotation), and numerical computations demonstrate a complicated picture of nonstationary destruction.  相似文献   

5.
Considered herein is the Ostrovsky equation which is widely used to describe the effect of rotation on the surface and internal solitary waves in shallow water or the capillary waves in a plasma. It is shown that the solitary-wave solutions are orbitally stable for certain wave speeds.

  相似文献   


6.
The Ostrovsky equation governs the propagation of long nonlinear surface waves in the presence of rotation. It is related to the Korteweg-de Vries (KdV) and the Kadomtsev-Petviashvili models. KdV can be obtained from the equation in question when the rotation parameter γ equals zero. A fundamental solution of the Cauchy problem for the linear Ostrovsky equation is presented in the form of an oscillatory Fourier integral. Another integral representation involving Airy and Bessel functions is derived for it. It is shown that its asymptotic expansion as γ → 0 contains the KdV fundamental solution as the zero term. The Airy transform is used to establish some of its properties. Higher-order asymptotics for γ → 0 on a bounded time interval are obtained for both the fundamental solution and the solution of the linear Cauchy problem for the Ostrovsky equation. Received: November 23, 2004; revised: March 13, 2005 Research is supported by US Department of Defense, under grant No. DAAD19-03-1-0204  相似文献   

7.
We consider the initial‐value problem for the regularized Boussinesq‐type equation in the class of periodic functions. Validity of the weakly nonlinear solution, given in terms of two counterpropagating waves satisfying the uncoupled Ostrovsky equations, is examined. We prove analytically and illustrate numerically that the improved accuracy of the solution can be achieved at the timescales of the Ostrovsky equation if solutions of the linearized Ostrovsky equations are incorporated into the asymptotic solution. Compared to the previous literature, we show that the approximation error can be controlled in the energy space of periodic functions and the nonzero mean values of the periodic functions can be naturally incorporated in the justification analysis.  相似文献   

8.
In this paper, the generalized Ostrovsky equation is introduced. Using a direct and effective method, some new solitary solutions to the generalized Ostrovsky equation, such as compacton solutions, multi-compacton solutions and compact-like kink solutions can be obtained. The homogenous balance (HB) method is used to obtain the Backlund transformation. And some new solitary solutions, particularly new double symmetric peakon solutions, are given by the transformation.  相似文献   

9.
The large‐amplitude internal waves commonly observed in the coastal ocean often take the form of unsteady undular bores. Hence, here, we examine the long‐time combined effect of variable topography and background rotation on the propagation of internal undular bores, using the framework of a variable‐coefficient Ostrovsky equation. Because the leading waves in an internal undular bore are close to solitary waves, we first examine the evolution of a single solitary wave. Then, we consider an internal undular bore, for which two methods of generation are used. One method is the matured undular bore developed from an initial shock box in the Korteweg–de Vries equation, that is the Ostrovsky equation with the rotational term omitted, and the other method is a modulated cnoidal wave solution of the same Korteweg–de Vries equation. It transpires that in the long‐time model simulations, the rotational effect disintegrates the nonlinear waves into inertia‐gravity waves, and then there emerge complicated interactions between these inertia‐gravity waves and the modulated periodic waves of the undular bore, especially at the rear part of the undular bore. However, near the front of the undular bore, nonlinear effects further modulate these waves, with the eventual emergence of nonlinear envelope wave packets.  相似文献   

10.
In a recent paper by Ya?ar [E. Ya?ar, New travelling wave solutions to the Ostrovsky equation, Appl. Math. Comput. 216 (2010), 3191-3194], ‘new’ travelling-wave solutions to the transformed reduced Ostrovsky equation are presented. In this note it is shown that some of these solutions are disguised versions of known solutions.  相似文献   

11.
The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Limited functional analytic results exist for the occurrence of one family of solitary-wave solutions of this equation, as well as their approach to the well-known solitons of the famous Korteweg–de Vries equation in the limit as the rotation becomes vanishingly small. Since solitary-wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary-wave solutions and are thus entirely new. Directions for future work are also mentioned.  相似文献   

12.
The extended reduced Ostrovsky equation (EX-ROE) are investigated by using the bifurcation method of planar systems and simulation method of differential equations. The bifurcation phase portraits are drawn in different regions of parameter plane. The planar graphs of the compactons and the generalized kink waves are simulated by using software Maple. Exact explicit parameter expressions of the compactons and implicit expressions of the generalized kink wave solutions are given. The dynamic behavior of these solutions are also investigated.  相似文献   

13.
In this work, new travelling wave solutions to the Ostrovsky equation are studied by employing the improved tanh function method. With this method, the Ostrovsky equation is reduced to the nonlinear ordinary differential equation and then the different types of exact solutions are derived based on the solutions of the Riccati equation. We will compare our solutions with those gained by the other methods.  相似文献   

14.
A procedure for finding the solutions of the Vakhnenko–Parkes equation by means of the inverse scattering method is described. Both the bound state spectrum and the continuous spectrum are considered in the associated eigenvalue problem. The suggested special form of the singularity function gives rise to periodic solutions. The interaction of a soliton with a one-mode periodic wave is studied.  相似文献   

15.
We consider the Ostrovsky equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the Ostrovsky–Hunter equation. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the LpLp setting.  相似文献   

16.
The Ostrovsky equation governs the propagation of long nonlinear surface waves in the presence of rotation. It is related to the Korteweg-de Vries (KdV) and the Kadomtsev-Petviashvili models. KdV can be obtained from the equation in question when the rotation parameter γ equals zero. A fundamental solution of the Cauchy problem for the linear Ostrovsky equation is presented in the form of an oscillatory Fourier integral. Another integral representation involving Airy and Bessel functions is derived for it. It is shown that its asymptotic expansion as γ → 0 contains the KdV fundamental solution as the zero term. The Airy transform is used to establish some of its properties. Higher-order asymptotics for γ → 0 on a bounded time interval are obtained for both the fundamental solution and the solution of the linear Cauchy problem for the Ostrovsky equation.  相似文献   

17.
We consider the amplitude equation for nonlinear surface wave solutions of hyperbolic conservation laws. This is an asymptotic nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. For example, this equation describes the propagation of nonlinear Rayleigh waves (Hamilton et al. in J Acoust Soc Am 97:891–897, 1995), surface waves on current-vortex sheets in incompressible MHD (Alì and Hunter in Q Appl Math 61(3):451–474, 2003; Alì et al. in Stud Appl Math 108(3):305–321, 2002) and on the incompressible plasma–vacuum interface (Secchi in Q Appl Math 73(4):711–737, 2015). The local-in-time existence of smooth solutions to the Cauchy problem for the amplitude equation in noncanonical variables was shown in Hunter (J Hyperbolic Differ Equ 3(2):247–267, 2006), Secchi (Q Appl Math 73(4):711–737, 2015). In the present paper we prove the continuous dependence in strong norm of solutions on the initial data. This completes the proof of the well-posedness of the problem in the classical sense of Hadamard.  相似文献   

18.
A powerful, easy-to-use analytic technique for nonlinear problems, namely the Homotopy analysis method, is applied to solve the Vakhnenko equation, a nonlinear equation with loop soliton solutions governing the propagation of high-frequency waves in a relaxing medium. By means of the transformation of independent variables, an analysis one-loop soliton solution expressed by a series of exponential functions is obtained, which agrees well with the exact solution. This indicates the validity and great potential of the Homotopy analysis method in solving complicated solitary wave problems.  相似文献   

19.
20.
By the method of dynamical system,we construct the exact travelling wave solutions of a new Hamiltonian amplitude equation and the Ostrovsky equation.Based on this method,the new exact travelling wave solutions of the new Hamiltonian amplitude equation and the Ostrovsky equation,such as solitary wave solutions,kink and anti-kink wave solutions and periodic travelling wave solutions,are obtained,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号