首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using techniques from active control theory, we demonstrate that a coupled Lorenz system can be synchronized. The application of the control elements is sequentially applied and the ensuing synchronization is displayed.  相似文献   

2.
This paper investigates the synchronization of two linearly coupled unified chaotic systems and two linearly coupled Lorenz systems. Some sufficient conditions for synchronization are attained through rigorous mathematical theory. Compared with the results in the reference [Chaos, Solitons & Fractals 2002;14:529], the sufficient condition for the synchronization of two linearly coupled Lorenz systems is simpler and less conservative. Numerical simulations are provided for illustration and verification.  相似文献   

3.
This work presents two simple and robust techniques based on time delay estimation for the respective control and synchronization of chaos systems. First, one of these techniques is applied to the control of a chaotic Lorenz system with both matched and mismatched uncertainties. The nonlinearities in the Lorenz system is cancelled by time delay estimation and desired error dynamics is inserted. Second, the other technique is applied to the synchronization of the Lü system and the Lorenz system with uncertainties. The synchronization input consists of three elements that have transparent and clear meanings.Since time delay estimation enables a very effective and efficient cancellation of disturbances and nonlinearities, the techniques turn out to be simple and robust. Numerical simulation results show fast, accurate and robust performance of the proposed techniques, thereby demonstrating their effectiveness for the control and synchronization of Lorenz systems.  相似文献   

4.
In this paper, dynamics of the fractional-order simplied Lorenz hyperchaotic system is investigated. Modied Adams-Bashforth-Moulton method is applied for numerical simulation. Chaotic regions and periodic windows are identied. Dierent types of motions are shown along the routes to chaos by means of phase portraits, bifurcation diagrams, and the largest Lyapunov exponent. The lowest fractional order to generate chaos is 3.8584. Synchronization between two fractional-order simplied Lorenz hyperchaotic systems is achieved by using active control method. The synchronization performances are studied by changing the fractional order, eigenvalues and eigenvalue standard deviation of the error system.  相似文献   

5.
This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.  相似文献   

6.
This paper investigates the problem of impulsive synchronization of discrete-time chaotic systems subject to limited communication capacity. Control laws with impulses are derived by using measurement feedback, where the effect of quantization errors is considered. Sufficient conditions for asymptotic stability of synchronization error systems are given in terms of linear matrix inequalities and algebraic inequalities. Some numerical simulations are given to demonstrate the effectiveness of the method.  相似文献   

7.
8.
The paper discusses the optimal control and synchronization problems of Lorenz systems with fully unknown parameters. Based on the Liapunov–Bellman technique, the optimal control law with three-state variables feedback is derived such that the trajectory of the Lorenz system is optimally stabilized to an equilibrium point of the uncontrolled system. Further, another optimal control law is also applied to achieve the state synchronization of two identical Lorenz systems. Numerical results to demonstrate the effectiveness of the proposed control scheme.  相似文献   

9.
The Lü system is a new chaotic system, which connects the Lorenz system and the Chen system and represents the transition from one to the other. In this letter, based on the concept of nonresonant parametric perturbations, further detailed analysis about the forming mechanism and its compound structure for the chaotic Lü system are offered. The obtained results clearly reveal the intermediate chaotic system has another novel forming mechanism: the compression and pull forming mechanism, which provides an enlighten insight about the relationship of its vibration “mode” and the two-scroll “base” chaotic attractor. Then motivated by this novel forming mechanism, by adding a simple nonlinear term to the Lü system, its role as a joint function is revisited. With the gradual tuning the parameter of the nonlinear controller, the transition from the canonical Lorenz attractor to the Chen attractor through the Lü attractor is revived. The scheme herein goes beyond the traditional framework for studying the Lorenz-like systems, which can be very helpful in generating and analyzing of all similar and closely related chaotic systems.  相似文献   

10.
In this paper, we improve and extend the works of Liu and Davids [Dual synchronization of chaos, Phys. Rev. E 61 (2000) 2176–2179] which only introduce the dual synchronization of 1-D discrete chaotic systems. The dual synchronization of two different 3-D continuous chaotic systems, Lorenz systems and Rössler systems, is discussed. And a sufficient condition of dual synchronization about the two different chaotic systems is obtained. Theories and numerical simulations show the possibility of dual synchronization and the effectiveness of the method.  相似文献   

11.
In the article, impulsive synchronization of chaotic bursting in Hindmarsh–Rose neuron systems with time delay via partial state signal is investigated. Based on impulsive control theory of dynamical systems, the sufficient conditions on feedback strength and impulsive interval are established to guarantee the synchronization. Numerical simulations show the effectiveness of the proposed scheme. The obtained results may be helpful to understand dynamical mechanism of signal transduction in real neuronal activity. © 2014 Wiley Periodicals, Inc. Complexity 21: 38–46, 2015  相似文献   

12.
This paper is concerned with optimal control problems for an impulsive system of the form $$\dot x(t) = f(t, x, u) + \sum\limits_{i = 1}^m {g_i } (t, x, u)\dot u_i ,u(t) \in U,$$ where the measurable controlu(·) is possibly discontinuous, so that the trajectories of the system must be interpreted in a generalized sense. We study in particular the case where the vector fieldsg i do not commute. By integrating the distribution generated by all the iterated Lie brackets of the vector fieldsg i , we first construct a local factorizationA 1 ×A 2 of the state space. If (x 1,x 2) are coordinates onA 1 ×A 2, we derive from (1) a quotient control system for the single state variablex 1, withu, x 2 both playing the role of controls. A density result is proved, which clarifies the relationship between the original system (1) and the quotient system. Since the quotient system turns out to be commutative, previous results valid for commutative systems can be applied, yielding existence and necessary conditions for optimal trajectories. In the final sections, two examples of impulsive systems and an application to a mechanical problem are given.  相似文献   

13.
The problem of impulsive generalized synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly the response system is constructed based on the impulsive control theory. Then by the asymptotic stability criteria of discrete systems with impulsive effects, some sufficient conditions for asymptotic H-synchronization between the drive system and response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.  相似文献   

14.
A single controller for synchronization of two Lorenz systems is obtained by using Lyapunov function. Numerical results are given for the all three cases with one controller in each equation. Controller contains two or three variables of the master system.  相似文献   

15.
In this paper, the adaptive synchronization method of coupled system is proposed for multi-Lorenz systems family. This method can avoid estimating the value of coupling coefficient. Strict theoretical proofs are given. And we derived a sufficient condition of synchronization for a general unidirectional coupling ring network with N identical Lorenz systems. The network is coupled through the first state variable of each equation. In fact, the whole unidirectional coupling network will synchronize by adding only one adaptive feedback gain equation. Numerical simulations show the effectiveness of the methods.  相似文献   

16.
考虑超混沌Lorenz系统的脉冲控制与修正投影同步,基于脉冲控制系统的稳定性理论,给出了脉冲控制与修正投影同步的充分条件,并通过数值仿真验证了所给充分条件的有效性.由定理4易知当同步因子α_1,α_2,α_3,α_4满足α_1~2=1,α_2=α_1α_3=α_4时所给同步方法无需控制器,因此方法可以看做是脉冲完全同步的推广.  相似文献   

17.
We consider variational problems with control laws given by systems of ordinary differential equations whose vector fields depend linearly on the time derivativeu=(u 1,...,u m ) of the controlu=(u 1,...,u m ). The presence of the derivativeu, which is motivated by recent applications in Lagrangian mechanics, causes an impulsive dynamics: at any jump of the control, one expects a jump of the state.The main assumption of this paper is the commutativity of the vector fields that multiply theu . This hypothesis allows us to associate our impulsive systems and the corresponding adjoint systems to suitable nonimpulsive control systems, to which standard techniques can be applied. In particular, we prove a maximum principle, which extends Pontryagin's maximum principle to impulsive commutative systems.  相似文献   

18.
This paper presents a systematic design procedure to synchronize two identical generalized Lorenz chaotic systems based on a sliding mode control. In contrast to the previous works, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation. A switching surface only including partial states is adopted to ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion even when the parameters of the drive and response generalized Lorenz systems are unknown. Last, an example is included to illustrate the results developed in this paper.  相似文献   

19.
Synchronization of time-varying dynamical network is investigated via impulsive control. Based on the Lyapunov function method and stability theory of impulsive differential equation, a synchronization criterion with respect to the system parameters and the impulsive gains and intervals is analytically derived. Further, an adaptive strategy is introduced for designing unified impulsive controllers, with a corresponding synchronization criterion derived. In this proposed adaptive control scheme, the impulsive instants adjust themselves to the needed values as time goes on, and an algorithm for determining the impulsive instants is provided and evaluated. The derived theoretical results are illustrated to be effective by several numerical examples.  相似文献   

20.
The issues of impulsive control and synchronization of chaotic Hindmarsh–Rose model are investigated in this paper. Based on impulsive control theory of dynamical systems, some simple yet less conservative criteria ensuring impulsive stabilization and synchronization of the Hindmarsh–Rose models are derived analytically. Furthermore, two numerical results are presented to demonstrate the effectiveness of the proposed control techniques. It is shown that the obtained results should be helpful to understand dynamical mechanism of signal encoding and transduction from information processing of real neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号