首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N′-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and 1H-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm. 1H-NMR experiments also inferred that the methyl proton of N-isopropylacrylamide appeared three peaks and responded to hydrogen-bonding interaction including polymer chain with water molecular, intramolecular interaction and intermolecular interaction, respectively.  相似文献   

2.
A responsive hydrogel microsphere, which is constituted by poly(N-isopropylacrylamide)/poly(ethylene glycol) diacrylate, was fabricated in an aqueous two-phase system based on the polymer–polymer immiscibility. Characteristics of the hydrogel microsphere, such as the particle size and the morphology of freeze-dried or hydrated natural microspheres in water, tetrahydrofuran (THF)/H2O (1:1 in volume) or acetone/H2O (1:1 in volume), were investigated. The results showed that the swelling ratio and the particle size of the hydrogel microspheres were highly dependent on solvent composition. In addition, these characteristics were dramatically reduced when THF or acetone was added into the aqueous media. Scanning electron microscopy and environmental scanning electron microscopy micrographs also visually demonstrated that the regular spherical shape of the microspheres in water turned to irregular in shape when the microspheres were immersed in THF/H2O or acetone/H2O mixtures instead of pure water.  相似文献   

3.
4.
A series of antibacterial hydrogels were fabricated from an aqueous solution of AgNO3, gelatin and carboxymethyl chitosan (CM-chitosan) by radiation-induced reduction and crosslinking at ambient temperature. The nanosilver particles were in situ synthesized accompanying with the formation of gelatin/CM-chitosan hydrogel. Transmission Electron Microscope and UV–vis analysis have verified the formation and homogeneous distribution of nanosilver particles in the hydrogel matrix. The nanosilver/gelatin/CM-chitosan hydrogels possessed interconnected porous structure, had a compressive modulus of 44 to 56 kPa, and could absorb 62 to 108 times of deionized water to its dry weight. Furthermore, the hydrogels were found to have sound antibacterial effect on Escherichia coli (E. coli), and their antibacterial ability could be significantly enhanced by the increasing of AgNO3 content. The comprehensive results of this study suggest that nanosilver/gelatin/CM-chitosan hydrogels have potential as an antibacterial wound dressing.  相似文献   

5.
Blend hydrogels composed of carboxymethyl chitosan (CMCh) and poly (acrylonitrile) (PAN) were synthesized via crosslinking method. Several analyses were made to investigate both physical and thermal properties of CMCh/PAN hydrogels like; FTIR, scanning electron microscope, XRD and thermogravimetric analysis (TGA). TGA results showed that CMCh/PAN hydrogels are thermally more stable than CMCh and their thermal stability increases as PAN content increases in the hydrogel. Moreover, the swelling behavior of CMCh/PAN hydrogels was studied in different buffer solutions. It was found that CMCh/PAN hydrogels swell much more than PAN especially at pH 9. The hydrogels sorption for different dyestuff and various metal ions like; Cu2+, Cd2+ and Co2+ were also studied. In this work, antibacterial characteristic of hydrogels was mainly investigated towards Escherichia coli (E. coli) as a serious disease-leading bacterium. All tested hydrogels have clearly presented good antibacterial activity as CMCh content increases in the hydrogels.  相似文献   

6.
Porous three‐dimensional collagen/chitosan scaffolds combined with poly (ethylene glycol) (PEG) and hydroxyapatite were obtained through a freeze‐drying method. Physical cross‐linking was examined by dehydrothermal treatment. The prepared materials were characterized by different analyses, eg, scanning electron microscopy (SEM), measurements of porosity and swelling, mechanical properties, and resistance to enzymatic degradation. The porosity of scaffolds and their swelling ratio decreased with the addition of hydroxyapatite. Moreover, after exposure to collagenase, the collagen/chitosan matrices containing PEG showed much faster degradation rate than matrices with the addition of hydroxyapatite. The results indicated that the addition of hydroxyapatite led to improvement of stiffness. The highest degree of porosity and swelling were demonstrated by collagen/chitosan/PEG matrices without hydroxyapatite.  相似文献   

7.
Thermo-sensitive poly (N-isopropylacrylamide) (PNIPA) hydrogel with fast response rate was prepared by polymerizing N-isopropylacrylamide (NIPA) in an aqueous hydroxyl-propyl-methyl cellulose solution. The volume phase transition temperature of PNIPA hydrogels was characterized by differential scanning calorimetry (DSC), and the surface morphology was observed by scanning electron microscopy (SEM). The swelling ratios of the hydrogels at different temperatures were measured. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. In comparison with a conventional PNIPA hydrogel prepared in water, the hydrogel synthesized in aqueous hydroxyl-propyl-methyl cellulose solution has higher swelling ratios at temperatures below the lower critical solution temperature and exhibits a much faster response rate to temperature changes. For example, the hydrogel made in aqueous hydroxyl-propyl-methyl cellulose solution lost 89% water within 1 min and about 93% water in 4 min, whereas the conventional hydrogel lost only about 66% water in 15 min from the deswelling measurement in similar conditions. Translated from Chinese Journal of Applied Chemistry, 2006, 23(6): 581–585 (in Chinese)  相似文献   

8.
A series of poly(vinyl alcohol)/chitosan (PVA/CTS) hydrogel thin films were prepared via ultraviolet (UV) irradiation, with acrylic acid (AA) monomer added as a crosslinker without the addition of any other photo-initiator. The swelling behaviors, intermolecular chemical bonds, molecular structures, thermal behaviors, degrees of crystallinity, morphologies of the surfaces and internal structure, and their relationship to the AA content were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Poly(acrylic acid) (PAA) and its chemical crosslinks formed in hydrogel films via free-radical reactions were confirmed using FTIR and DSC analyses. The XRD patterns indicated that the degree of crystallinity of the hydrogel films decreased as the PAA content was increased. SEM micrographs showed that a uniform interconnected pore structure was formed through the entire hydrogel structure, and a gradient in the crosslinking density through the film thickness was observed to result from extended irradiation times. The swelling behaviors revealed that the formation of PAA and its crosslinking in the hydrogel thin films improved the pH stability and controlled the degree of swelling while retaining a high swelling rate. The successful formation of chemical crosslinking without any specific photo-initiator improves the natural characteristics of CTS and PVA and imparts the resulting PVA/CTS hydrogel thin films with properties that make them very promising in biomedical applications.  相似文献   

9.
In this paper, series of novel pH-responsive silver (Ag) nanoparticle/poly(2-hydroxyethyl methacrylate (HEMA)-poly(ethylene glycol) methyl ether methacrylate (PEGMA)-methacrylic acid (MAA)) composite hydrogel were successfully prepared by in situ reducing Ag+ ions anchored in the hydrogel by the deprotonized carboxyl acid groups. X-ray diffraction (XRD), UV-vis spectrophotometry, transmission electron microscopy (TEM) and electric conductivity tests were used to characterize the composite system. It was found that the size and morphology of the reduced Ag nanoparticles in the composite hydrogels could be changed by loading the Ag+ ions at various swelling ratios of hydrogel. Moreover, compared to the pure poly(HEMA-PEGMA-MAA) hydrogel, not only did the Ag nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogels exhibit much higher swelling ratio and faster deswelling rate, but also higher pH switchable electrical properties upon controlling the interparticle distance under pH stimulus. The pH responsive nanocomposite hydrogel reported here might be a potentially smart material in the range of applications including electronics, biosensors and drug-delivery devices.  相似文献   

10.
In order to improve the properties of chitosan and obtain new fully biodegradable materials, blends of poly(l-lactide) (PLLA) and chitosan with different compositions were prepared by precipitating out PLLA/chitosan from acetic acid-DMSO mixtures with acetone. The blends were characterized by Fourier transform infrared analysis (FTIR), X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), 13C solid-state NMR and Wide-angle X-ray diffraction (WAXD). FTIR and XPS results showed that intermolecular hydrogen bonds existed between two components in the blends, and the hydrogen bonds were mainly between carbonyls of PLLA and amino groups of chitosan. The melting temperatures, cold crystallization temperatures and crystallinity of the PLLA component decreased with the increase in chitosan content. Blending chitosan with PLLA suppressed the crystallization of the PLLA component. Although the crystal structure of PLLA component was not changed, the crystallization of the blends was affected because of the existence of hydrogen bonds between two components, which was proved by WAXD results.  相似文献   

11.
Thermo- and pH-responsive semi-IPN polyampholyte hydrogels were prepared by using carboxymethyl chitosan and P(2-(dimethylamino) ethyl methacrylate) with N N'-Methylenebisacrylamide (BIS) as crosslinking agent. It was found that the semi-IPN hydrogel shrunk most at the isoelectric point (IEP) and swelled when pH deviated from the IEP. Its swelling ratio dramatically decreased between 30 and 50 °C at pH 6.8 buffer solution. It also showed good reversibility. The UV results showed that when the pH values of drug release medium were 3.7, 6.8, and 9 at 25 °C, the cumulative release rates reached 83.1, 51.5, and 72.2%, respectively. The release rate of coenzyme A (CoA) was higher at 50 °C than 37 and 25 °C at pH 6.8 solution. The release rate decreased with increasing the content of carboxymethyl chitosan at 25 °C in pH 6.8 solution. The results showed that semi-IPN hydrogel seems to be of great promise in pH/temperature drug delivery systems.  相似文献   

12.
The feasibility of temperature-swing adsorption of heavy metals on a thermosensitive N-isopropylacrylamide (NIPA) hydrogel was examined. We have proposed a novel temperature-swing solid-phase extraction (TS-SPE) technique. First, a metal ion in an aqueous solution is complexed with an extractant. Subsequently, the metal-extractant complexes (or micelles) are adsorbed onto the NIPA hydrogel through a hydrophobic interaction above the lower critical solution temperature (LCST). Finally, the metal-extractant complexes are desorbed from the NIPA hydrogel after it is cooled below the LCST. In a model system consisting of Cu(II) ions, sodium n-dodecylbenzenesulfonate (SDBS), and NIPA hydrogel, the proposed TS-SPE technique has been successfully conducted. The following observations can be made: the amount of adsorbed Cu(II) ions increases with the increase in temperature, the maximum adsorption is attained at a temperature above the LCST, and the hydrogel adsorbs and desorbs Cu(II) ions reversibly due to the temperature-swing between 10 and 40 degrees C. The LCSTs of poly(NIPA) in aqueous SDBS solutions with/without CuCl2 and the surface tensions of their solutions suggest that the hydrophobicity of the complex Cu(DBS)2 is greater than the hydrophobicities of SDBS and DBS. In addition to the separation of heavy metals, TS-SPE is potentially applicable to cases such as the separation of biological molecules by means of metal-ion affinity.  相似文献   

13.
采用自由基聚合法在水溶液中制备了温敏水凝胶聚N-异丙基丙烯酰胺(PNIPAAm),以非水溶性药物布洛芬(IBU)为模型药物分子,研究了该水凝胶的温敏性能及与药物IBU的相互作用,考察了不同温度下(25 ℃和37 ℃)IBU在磷酸盐缓冲溶液(PBS,pH=7.4)中的释放行为.研究结果表明:该水凝胶的最低临界溶解温度(L...  相似文献   

14.
Poly(p‐dioxanone) (PPDO)/montmorillonite nanocomposites were prepared through the in situ ring‐opening polymerization of p‐dioxanone (PDO) and three types of montmorillonites (natural sodium montmorillonite, montmorillonite modified by octadecyltrimethyl ammonium chloride, and montmorillonite modified by hydroxyethylhexadecyldimethyl ammonium bromine) in the presence of triethylaluminum. Montmorillonite could accelerate the polymerization of PDO, and the viscosity‐average molecular weight of PPDO could reach 44,900 g/mol in 0.5 h. A nucleating effect of montmorillonite was observed, and the crystallization temperature of PPDO was increased by 18 °C. All three montmorillonites could improve the thermal stability of PPDO and increase the glass‐transition and melting temperatures of PPDO. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2298‐2303, 2005  相似文献   

15.
The structural features and swelling properties of responsive hydrogel films based on poly(N-isopropylacrylamide) copolymers with a photo-cross-linkable benzophenone unit were investigated by surface plasmon resonance, optical waveguide mode spectroscopy, and atomic force microscopy. The temperature-dependent swelling behavior was studied with respect to the chemical composition of the hydrogel polymers containing either sodium methacrylate or methacrylic acid moieties. In the sodium methacrylate system, a refractive index gradient was found that was not present in the free acid gel. This refractive index gradient, perpendicular to the swollen hydrogel film surface, could be analyzed in detail by application of the reversed Wentzel-Kramers-Brillouin (WKB) approximation to the optical data. This novel approach to analyzing thin-film gradients with the WKB method presents a powerful tool for the characterization of inhomogeneous hydrogels, which would otherwise be very difficult to capture experimentally. In AFM images of the hydrogel layers, a macroscopic pore structure was observed that depended on the polymer composition as well as on the swelling history. This pore structure apparently prevents the often-observed skin barrier effect and leads to a quickly responding hydrogel.  相似文献   

16.
A photoresponsive hydrogel was prepared by radical copolymerization of N-isopropylacrylamide, a vinyl monomer having a spirobenzopyran residue and cross-linker. By the observation of photoresponsive shrinking and the conductance change, it was confirmed that the hydrogel in an acidic condition exhibited drastic and rapid volume shrinkage and proton dissociation when it was irradiated with blue light. Further, to examine its application to the mass transfer control, we prepared a photo- and thermoresponsive gate membrane by introducing this photoresponsive hydrogel to the surface of a porous membrane. As the first demonstration of the photocontrol of membrane permeation for liquid, it was observed that its permeability for 1 mM HCl aqueous solution increased by 2 times in response to the blue light irradiation, and this photoresponse of the permeability was confirmed to be repeatable.  相似文献   

17.
 A series of P[N-isopropylacrylamide (NIPAM)] latexes with different contents of cyano groups were successfully prepared by either seeded or shot-growth polymerizations of an aqueous solution containing acrylonitrile (AN) onto a seed P[NIPAM] latex, respectively, and further characterized by FT-IR, 1H-NMR, elemental analysis, as well as by quasielastic light scattering (QELS) and scanning electron microscopy (SEM). All prepared surface-cyanofunctionalized P[NIPAM] latexes exhibited the same range of lower critical solution temperature (LCST) as a pure P[NIPAM] latex. The shot polymerization process proved more efficient at yielding cyano derivatized latexes than the seeded polymerization technique. The amount of incorporated cyano groups onto the particles was determined with a good correlation both by 1H-NMR and elemental analysis. The higher the amount of initially introduced AN monomer in the reaction mixture, the more cyano groups were incorporated onto the particles. The surface of the particles with high content of cyano groups appeared quite rough by SEM in comparison with that of the pure P[NIPAM] particles. Received: 25 February 1998 Accepted: 23 June 1998  相似文献   

18.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号