首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction products of normal cucurbit[n]urils (n = 7, 8; Q[7] Q[8]) and a sym- tetramethyl-substituted cucurbit[6]uril derivative (TMeQ[6]) with the hydrochloride salts of 2,4-diaminoazobenzene (g·HCl) were investigated in aqueous solution using 1H NMR spectroscopy, electronic absorption spectroscopy, as well as single crystal X-ray diffraction. The 1H NMR spectra analysis established a basic interaction model in which inclusion complexes with a host:guest ratio of 1:1 form for the TMeQ[6] and Q[7] cases, while they form with a host:guest ratio of 1:2 for the Q[8] case. Commonly, the hosts selectively bound to the phenyl moieties of the guests. Absorption spectrophotometric analysis in aqueous solution defined the stability of the host–guest inclusion complexes at pH 3.2. Quantitatively, at this pH, complexes with a host:guest ratio of 1:1—those with smaller hosts TMeQ[6] and Q[7]—formed with logK values between 6 and 7. That with host Q[8] and a host:guest ratio of 1:2 formed with a logK value of 10.8. Single crystal X-ray structures of the inclusion complexes TMeQ[6]–g·HCl and Q[8]–g·HCl showed the phenyl moiety of the guest inserted into the host cavity. This result supports the solution-based 1H NMR spectroscopic study.  相似文献   

2.
Interaction between the normal cucurbit[n]urils (n = 6,7,8; Q[6], Q[7], Q[8]) and a sym-tetramethyl-substituted cucurbit[6]uril derivative (TMeQ[6]) with the hydrochloride salts of some imidazole derivatives N-(4-hydroxylphenyl)imidazole (g1), N-(4-aminophenyl)imidazole (g2), 2-phenylimidazole (g3) in aqueous solution was investigated by using 1H NMR spectroscopy, electronic absorption spectroscopy and fluorescence spectroscopy, as well as by using a single crystal X-ray diffraction determination. The 1H NMR spectra analysis established a basic interaction model in which inclusion complexes with a host:guest ratio of 1:1 forms for the Q[6]s and Q[7] cases, while with a host:guest ratio of 1:2 form for the Q[8] cases. It was common that the hosts selectively bound the phenyl moiety of the guests. Absorption spectrophotometric and fluorescence spectroscopic analysis in aqueous solution defined the stability of the host–guest inclusion complexes at pH 5.8 with a host:guest ratio of 1:1 form quantitatively as logK values between 4 and 5 for the smaller hosts Q[6 or 7]s, while with a host:guest ratio of 1:2 form quantitatively as logK values between 11 and 12 for the host Q[8]. Two single crystal X-ray structures of the inclusion complexes TMeQ[6]-g2 · HCl and TMeQ[6]-g3 · HCl showed the phenyl moiety of these two guests inserted into the host cavity, which supported particularly the 1H NMR spectroscopic study in solution.  相似文献   

3.
1H NMR spectra and fluorescence analysis revealed that the molecular shuttle and pseudorotaxane assembly of Q[7] with guest G2+ can be significantly switched via protonation and deprotonation of the terminal carboxylates of the guest.  相似文献   

4.
Achieving strong host–guest interactions between synthetic hosts and hydrophilic guests in solution is challenging because solvation effects overwhelm other effects. To resolve this issue, we transferred complexes of cucurbit[7]uril (CB[7]) and monosaccharides to the gas phase and report here their intrinsic host–guest chemistry in the absence of solvation effects. It was observed that effective host–guest interactions in the gas phase mediated by ammonium cations allow the differentiation of the monosaccharide isomers in complex with CB[7] upon vibrational excitation. The potential of the unique observation was extended to a quantitative supramolecular analytical method for the monosaccharide guests. The combination of host–guest chemistry and phase transfer presented in this study is an effective approach to overcome current limitations in supramolecular chemistry.  相似文献   

5.
合成和表征了4个碳链长度不同二溴化1,n-亚烷基-二-2-甲基吡啶(客体,n=6,8,10,12),利用1H NMR技术、热重分析及紫外吸收光谱法考察了这些客体与七、八元瓜环(主体)的相互作用,以及形成的主客体包结物的结构特征.研究结果表明4个客体与七、八元瓜环形成不同的主客体包合物.七元瓜环可穿梭在线性客体分子上形成类轮烷型或哑铃型主客体包合物;而由于具有较大的空腔,八元瓜环可包容弯曲状的整个客体分子.  相似文献   

6.
The aqueous solution of riboflavin and cucurbit[7]uril complex has been studied based on fluorescence and 1H NMR spectroscopic results. Upon addition of cucurbit[7]uril, the fluorescence intensity of riboflavin was quenched and a slight red shift was observed for the maximum emission peak. These results indicated that the cucurbit[7]uril–riboflavin complex was formed at a 1:1 mole ratio. The temperature-dependent inclusion constants were calculated, from which ΔH and ΔS values were calculated. Meanwhile, rationale of the interaction mechanism was also discussed based on 1H NMR results. The solid inclusion complex was prepared from co-evaporation method and characterised by differential thermal analysis and fluorescence lifetime analysis methods. The experimental results indicated that riboflavin and cucurbit[7]uril formed stable host–guest inclusion complex in both solution and solid states.  相似文献   

7.
This paper describes the host properties of a new cucurbit[6]uril analogue, studied by fluorescence and 1H NMR spectroscopy. This host has an elongated cavity with oval-shaped portals. It is intrinsically fluorescent, and more importantly, this fluorescence is sensitive to guest encapsulation, allowing for the study of the inclusion of nonfluorescent guests by fluorescence spectroscopy. In the case of benzene as guest, significant enhancement of the cucurbit[6]uril analogue host fluorescence was observed upon addition of benzene; this allowed for the determination of the binding constant for 1:1 host-guest complexation, yielding a value of K = 6900 +/- 1100 M(-1). This complexation was also studied by 1H NMR, yielding a similar value of K = 8980 +/- 500 M(-1). The binding of a much larger guest, the dye Nile Red, was also studied, but in this case using guest fluorescence. Significant suppression of the Nile Red fluorescence was observed upon 1:1 complexation with the cucurbit[6]uril analogue, with an extremely large binding constant of 8.2 +/- 0.5 x 10(6) M(-1), indicating a very strong host-guest interaction and an excellent size and shape match. In both cases, binding was much stronger than in the case of the same guests with cucurbit[6]uril itself, and in the case of Nile Red, binding was also much stronger than with modified beta- or gamma-cyclodextrins. This is partly a result of the partial aromatic nature of the host walls, which allow for pi-pi interactions not possible in cucurbiturils or cyclodextrins. The ability to study its inclusion complexes using either host or guest fluorescence, and the very high binding constants observed, illustrates the versatility and potential usefulness of this new host compound.  相似文献   

8.
Guest–host inclusion complexes between thiabendazole (TBZ) and cucurbit[7]uril (Q[7]), symmetrical tetra-methylcucurbit[6]uril (TMeQ[6]) and meta-hexamethyl-substituted cucurbit[6]uril (HMeQ[6]) in aqueous solution were investigated by 1H NMR spectroscopy and phase solubility studies. The antifungal activities of the inclusion complexes were also determined. Analysis of the 1H NMR spectra revealed that the host Q[7] selectively binds the benzimidazole ring moiety of the guest molecule and that the thiazole ring is encapsulated into the cavities of TMeQ[6] and HMeQ[6]. Phase solubility diagrams were analysed using rigorous procedures to obtain estimates of the complex formation constants for Q[n]-TBZ complexation. The phase solubility studies showed that TBZ solubility increased as a function of Q[7], TMeQ[6] and HMeQ[6] concentrations. We found that complexation of TBZ with Q[n] increased the inhibitory effect of TBZ on the growth of Fusarium graminearum. Our results thus demonstrate that complexation of TBZ with Q[n] could be used to improve the solubility and antifungal activity of TBZ.  相似文献   

9.
In this work, molecular dynamics (MD) simulations have been conducted to study the inclusion complexes between cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD) with N-methyl-4-(p-methyl benzoyl)-pyridinium methyl cation, and N-methyl-4-(p-methyl benzoyl)-pyridine in aqueous solutions to gain detailed information about the dynamics and mechanism of the inclusion complexes. The obtained MD trajectories were used to estimate the binding free energy of the studied complexes using the molecular mechanics/Poisson Bolzmann surface area (MM–PBSA) method. Results indicate preference of CB7 to bind to the cationic guest more than the neutral guest, whereas β-CD exhibits more or less the same affinity to complex with either species. Furthermore it was interesting to note that β-CD forms more stable complexes with both guests than CB7. Average structure of each complex and the distances between the center of masses of the guest and the host were also discussed.  相似文献   

10.
Guest–host inclusion complexes between 6-benzyladenine (6-BA), cucurbit[7]uril (Q[7]), symmetrical tetramethylcucurbit[6]uril (TMeQ[6]) and meta-hexamethyl-substituted cucurbit[6]uril (HMeQ[6]) in aqueous solution were investigated by 1H NMR, UV absorption spectroscopy and phase solubility studies. The 1H NMR spectra analysis revealed that the hosts selectively bound the phenyl moiety of the guests. Absorption spectroscopic analysis defined the stability of the host–guest inclusion complexes. A host:guest ratio of 1:1 was measured quantitatively as (5.63 ± 0.26) × 104, (1.94 ± 0.17) × 103 and (2.89 ± 0.23) × 103 mol L? 1 for the Q[7]-6-BA, TMeQ[6]-6-BA and HMeQ[6]-6-BA systems, respectively. Phase solubility diagrams were analysed through rigorous procedures to obtain estimates of the complex formation constants for Q[n]-6-BA complexation. The formation constants were (1.29 ± 0.24) × 104 L mol? 1 for Q[7]-6-BA, (3.20 ± 0.17) × 103 L mol? 1 for TMeQ[6]-6-BA and (3.52 ± 1.01) × 103 L mol? 1 for TMeQ[6]-6-BA. Furthermore, phase solubility studies showed that 6-BA solubility increased as a function of Q[7], TMeQ[6] and HMeQ[6] concentrations. The thermodynamic parameters of the complex formation were also determined. The formation of inclusion complexes between 6-BA and Q[7] was enthalpy controlled, suggesting that hydrophobic and van der Waals interactions were the main driving forces. Our results demonstrated that the complexation of 6-BA with Q[n] could be used to improve the solubility of 6-BA.  相似文献   

11.
合成了三种长链多芳环多胺基客体, 它们分别由三种醛基吡啶异构体与4,4'-二氨基二苯甲烷形成的Schiff碱还原而成, 并得到1H NMR以及质谱分析方法表征证实. 以核磁共振技术、紫外吸收光谱分析方法以及滴定1H NMR方法为研究手段, 对瓜环(cucurbit[n]urils, n=6~8)分别与三种4,4'-二[N-(吡啶甲基)氨基]二苯甲烷盐酸盐相互作用进行了考察. 实验结果表明, 六元瓜环与三种4,4'-二[N-(吡啶甲基)氨基]二苯甲烷盐酸盐相互作用均形成物质的量之比为2∶1的哑铃型包结配合物; 八元瓜环与三种N,N'-二(N-(吡啶甲基)二苯甲烷盐酸盐相互作用形成以类轮烷结构为主的包结配合物; 七元瓜环与三种N,N'-二(N-(吡啶甲基)二苯甲烷盐酸盐相互作用存在多种模式的竞争.  相似文献   

12.
合成了3种具有对不同瓜环选择性各异的双探针N-苄基取代笼状客体, 它们分别是N-苄基六次甲基四胺盐酸盐(1), N-苄基喹啉环啶盐酸盐(2), N-苄基-1,4-二氮杂双环[2.2.1]辛烷盐酸盐(3), 利用1H NMR和MS等方法对这些客体进行了表征. 1H NMR显示, 六元瓜环仅对这些客体的苄基探针部分具有选择性作用, 形成作用比为1∶1的不对称包结配合物; 七元瓜环对客体13的苄基探针部分具有选择性作用, 形成作用比为1∶1的不对称包结配合物, 而对客体2的笼状奎宁环啶基部分具有选择性作用, 也形成作用比为1∶1的包结配合物; 八元瓜环也仅对这些客体的苄基探针部分具有选择性作用, 形成作用比为1∶2的对称包结配合物.  相似文献   

13.
Cucurbituril a molecular container (or host) has a rigid hollow interior cavity which is large enough to accommodate, one or more, smaller molecules (or guests). The cavity is accessible through two carbonyl portal openings. Molecules or guests enter the …  相似文献   

14.
Supramolecular building blocks, such as cucurbit[n]uril (CB[n])‐based host–guest complexes, have been extensively studied at the nano‐ and microscale as adhesion promoters. Herein, we exploit a new class of CB[n]‐threaded highly branched polyrotaxanes (HBP‐CB[n]) as aqueous adhesives to macroscopically bond two wet surfaces, including biological tissue, through the formation of CB[8] heteroternary complexes. The dynamic nature of these complexes gives rise to adhesion with remarkable toughness, displaying recovery and reversible adhesion upon mechanical failure at the interface. Incorporation of functional guests, such as azobenzene moieties, allows for stimuli‐activated on‐demand adhesion/de‐adhesion. Macroscopic interfacial adhesion through dynamic host–guest molecular recognition represents an innovative strategy for designing the next generation of functional interfaces, biomedical devices, tissue adhesives, and wound dressings.  相似文献   

15.
We have prepared organic guest molecules in which two pyridinium rings are connected through an aromatic/aliphatic bridge bearing a carboxyl group. The supramolecular interactions between these guests and macrocyclic hosts cucurbit[7]uril ( CB7 ) and cucurbit[8]uril ( CB8 ) has been studied. We have demonstrated that the binding modes of the complexes depend on the type of central bridge present in the guest molecules and the size of the macrocycle. We have also showed that the binding mode between cucurbiturils and guests with aromatic bridges is pH independent. On the other hand, a guest containing an aliphatic bridge and CB7 formed a pseudorotaxane, which behaved as a pH‐driven molecular switch.  相似文献   

16.
Molecular dynamics (MD) simulations were carried out to study the host–guest complexation in aqueous solution between cucurbit[7]uril (CB7) and the neutral and protonated forms of benzimidazole derivatives. Complexation occurs via encapsulation of the hydrophobic part (benzene ring) of the guest within the CB7 hydrophobic cavity, and the interactions of the amine group(s) of the imidazole ring of the guest with the CB7 carbonyl portals. The molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) method is used to estimate the host–guest Gibbs energy of binding. The results indicate that CB7 binds the protonated form more strongly than the neutral one, and that the dominant contribution to the Gibbs energy of complexation for the neutral and protonated guests is associated, respectively, with the host–guest van der Waals and electrostatic interactions. Quantum chemical calculations using dispersion-corrected density functional theory (DFT) are used to calculate the binding affinities and to predict the pKa values of the free and complexed guests. The calculated pKa values for the free guests reveal excellent agreement with the experimental values, while for the complexed guests, general trends are obtained.  相似文献   

17.
In this study, we have investigated the supramolecular interaction between series of 1‐alkyl‐3‐methylimidazolium guests with variable alkyl substituent lengths and cucurbit[6]uril (CB6) in the solution and the solid state. Correct interpretation of 1H NMR spectra was a key issue for determining the binding modes of the complexes in solution. Unusual chemical shifts of some protons in the 1H NMR spectra were explained by the polarization of the imidazolium aromatic ring upon the complexation with the host. The formation of 1:1 complex between 1‐ethyl‐3‐methylimidazolium and CB6 is in disagreement with previously reported findings describing an inclusion of two guest molecules in the CB6 cavity.  相似文献   

18.
Binding behaviors of cucurbit[6]uril (CB[6]) and cucurbit[7]uril (CB[7]) with a series of bis-pyridinium compounds N, N’-hexamethylenebis(1-alkyl-4-carbamoyl pyridinium bromide) (HBPB-n) (alkyl chain length, n = 6, 8 and 10) guests were investigated using 1H-NMR, ESI–MS and single crystal X-ray diffraction methods. The results show that CB[6] and CB[7] can form [2]pseudorotaxanes with HBPB-n easily. When increasing the length of tail alkyl chain, the binding site of CB[6] at guest molecules changed from the tail to the middle part, while CB[7] remained located over the tail chain. As CB[6] and CB[7] were added in HBPB-8 aqueous solution, a [3]pseudorotaxane was formed by the inclusion of the internal middle site in CB[6] and the tail chain in CB[7].  相似文献   

19.
The 1:1 and 2:1 host–guest complexation of a series of 1,n-bis(isoquinolinium)alkane dications (Iq(CH2)nIq2+, n = 2, 4, 5, 6, 8, 9, 10 and 12, and Iq(p-xylene)Iq2+) by cucurbit[7]uril (CB[7]) in aqueous solution has been investigated by 1H NMR spectroscopy and ESI mass spectrometry. The site of binding of the first CB[7] is dependent on the nature of the central linker group, with encapsulation of the p-xylene group or the polymethylene chain when n = 6–10.With shorter (n = 2–5) or longer (n = 12) chains, the first CB[7] binds over an isoquinolinium group. With a second CB[7], the binding of the central group is abandoned in favour of the CB[7] hosts encapsulating the two cationic isoquinolinium termini. The 1:1 and 2:1 host–guest stability constants are related to modes of binding and the nature of the central linkers, and are compared with dicationic guests bearing different terminal groups.  相似文献   

20.
We designed and synthesized the three molecular tweezers 1 a – c 4+ containing an electron acceptor 4,4‐bipyridinium (BPY2+) unit in each of the two arms and an (R)‐2,2‐dioxy‐1,1‐binaphthyl (BIN) unit that plays the role of chiral centre and the hinge of the structure. Each BPY2+ unit is connected to the BIN hinge by an alkyl chain formed by two‐ ( 1 a 4+), four‐ ( 1 b 4+), or six‐CH2 ( 1 c 4+) groups. The behavior of 1 a – c 4+ upon chemical or photochemical reduction in the absence and in the presence of cucurbit[8]uril (CB[8]) or cucurbit[7]uril (CB[7]) as macrocyclic hosts for the bipyridinium units has been studied in aqueous solution. A detailed analysis of the UV/Vis absorption and circular dichroism (CD) spectra shows that the helicity of the BIN unit can be reversibly modulated by reduction of the BPY2+ units, or by association with cucurbiturils. Upon reduction of 1 a – c 4+ compounds, the formed BPY+ . units undergo intramolecular dimerization with a concomitant change in the BIN dihedral angle, which depends on the length of the alkyl spacers. The alkyl linkers also play an important role in association to cucurbiturils. Compound 1 a 4+, because of its short carbon chain, associates to the bulky CB[8] in a 1:1 ratio, whereas in the case of the smaller host compound CB[7] a 1:2 complex is obtained. Compounds 1 b 4+ and 1 c 4+, which have longer linkers, associate to two cucurbiturils regardless of their sizes. In all cases, association with CB[8] causes an increase of the BIN dihedral angle, whereas the formation of CB[7] complexes causes an angle decrease. Reduction of the CB[8] complexes results in an enhancement of the BPY+ . dimerization with respect to free 1 a – c 4+ and causes a noticeable decrease of the BIN dihedral angle, because the BPY+ . units of the two arms have to enter into the same macrocycle. The dimer formation in the CB[8] complexes characterized by a 1:2 ratio implies the release of one macrocycle showing that the binding stoichiometry of these host–guest complexes can be switched from 1:2 to 1:1 by changing the redox state of the guest. When the reduction is performed on the CB[7] complexes, dimer formation is totally inhibited, as expected because the CB[7] cavity cannot host two BPY+ . units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号