首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cellulose microsphere (CMS) adsorbent was prepared by radiation-induced grafting of dimethylaminoethyl methacrylate (DMAEMA) onto CMS followed by a protonation process. The FTIR spectra analysis proved that PDMAEMA was grafted successfully onto CMS. The adsorption of Cr(VI) onto the resulting adsorbent was very fast, the equilibrium adsorption could be achieved within 15 min. The adsorption capacity strongly depended on the pH of the solution, which was attributed to the change of both the existed forms of Cr(VI) and the tertiary-ammonium group of PDMAEMA grafted CMS with the pH. A maximum Cr(VI) uptake (ca. 78 mg g?1) was obtained as the pH was in the range of 3.0–6.0. However, even in strong acid media (pH 1.3), the adsorbents still showed a Cr(VI) uptake of 30 mg g?1. The adsorption behavior of the resultant absorbent could be described with the Langmuir mode. This adsorbent has potential application for removing heavy metal ion pollutants (e.g. Cr(VI)) from wastewater.  相似文献   

2.
Water-insoluble pyrolytic cellulose with similar appearance to pyrolytic lignin was found in cellulose fast pyrolysis oil. The influence of pyrolysis temperature on pyrolytic cellulose was studied in a temperature range of 300–600 °C. The yield of the pyrolytic cellulose increased with temperature rising. The pyrolytic cellulose was characterized by various methods. The molecular weight distribution of pyrolytic cellulose was analyzed by gel permeation chromatography (GPC). Four molecular weight ranges were observed, and the Mw of the pyrolytic cellulose varied from 3.4 × 103 to 1.93 × 105 g/mol. According to the elemental analysis (EA), the pyrolytic cellulose possessed higher carbon content and lower oxygen content than cellulose. Thermogravimetric analysis (TGA) indicated that the pyrolytic cellulose underwent thermo-degradation at 127–800 °C and three mass loss peaks were observed. Detected by the pyrolysis gas chromatography–mass spectrometry (Py-GC/MS), the main pyrolysis products of the pyrolytic cellulose included saccharides, ketones, acids, furans and others. Fourier transforms infrared spectroscopy (FTIR) also demonstrated that the pyrolytic cellulose had peaks assigned to CO stretching and glycosidic bond, which agreed well with the Py-GC/MS results. The pyrolytic cellulose could be a mixture of saccharides, ketones, and their derivatives.  相似文献   

3.
The cellulose without and with catalyst (CuCl2, AlCl3) was subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 37–84 wt% depending on the temperature, the heating rate and the amount of metal chloride. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil. The mixing cellulose with both metal chlorides results with a significant decrease of the liquid product. The non-catalytic pyrolysis of cellulose gives the highest mass yield of levoglucosan (up to 11.69 wt%). The great influence of metal chloride amount on the distribution of bio-oil components was observed. The copper(II) chloride and aluminum chloride addition to cellulose clearly promotes the formation of levoglucosenone (up to 3.61 wt%), 1,4:3,6-dianhydro-α-d-glucopyranose (up to 3.37 wt%) and unidentified dianhydrosugar (MW = 144; up to 1.64 wt%). Additionally, several other compounds have been identified but in minor quantities. Based on the results of the GC–MS, the effect of pyrolysis process conditions on the productivity of selected chemicals was discussed. These results allowed to create a general model of reactions during the catalytic pyrolysis of cellulose in the presence of copper(II) chloride and aluminum chloride.  相似文献   

4.
Cellulose and cellulose/montmorillonite K10 mixtures of different ratio (9:1, 3:1, 1:1) were subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 46–73.5 wt% depending on the temperature, the heating rate and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (84 wt%). The blending cellulose with increasing amount of montmorillonite K10 results in significant, linear decrease in bio-oil yield. The great influence of montmorillonite K10 amount on the distribution of bio-oil components was observed at 450 °C with a heating rate of 100 °C/s. The addition of catalyst to cellulose promotes the formation of 2-furfural (FF), various furan derivatives, levoglucosenone (LGO) and (1R,5S)-1-hydroxy-3,6-dioxabicyclo-[3.2.1]octan-2-one (LAC). Simultaneously, the share of levoglucosan (LG) in bio-oil decreases from 6.92 wt% and is less than 1 wt% when cellulose:MK10 (1:1, w/w) mixture at 450 °C is rapidly pyrolyzed. Additionally, several other compounds have been identified but in minor quantities. Their contributions in bio-oil also depend on the amount of catalyst.  相似文献   

5.
Crosslinking of polyethylene influences its swelling properties. It could be expected that pre-crosslinking of polyethylene influences the rate and yield of grafting as well. This is demonstrated by pre-crosslinking of polyethylene and by its subsequent grafting with styrene after the trapped radicals had been annealed out.In order to obtain more direct information about the influence of swelling agent on polyethylene crosslinking, the elastic modulus of the crosslinked polyethylene was investigated. Stress–strain curves of polyethylene samples irradiated in different environments were recorded in molten state at 165 °C. The results show that irradiation of swollen polyethylene produces fewer effective crosslinks than does irradiation of dry polymer.  相似文献   

6.
Cellulose was extracted from sugarcane bagasse by alkaline extraction with sodium hydroxide followed by delignification/bleaching using sodium chlorite/hexamethylenetetramine system. Factors affecting extraction process, including sodium hydroxide concentration, hexamethylenetetramine concentration and temperature were studied and optimum conditions for alkaline extraction were found to be boiling finely ground bagasse under reflux in 1 N sodium hydroxide solution and then carrying out the delignification/bleaching treatment at 95 °C using 5 g/l sodium chlorite together with 0.02 g/l hexamethylenetetramine. The extracted cellulose was used in the preparation of hydroxyethyl cellulose through reaction with ethylene oxide in alkaline medium. Factors affecting the hydroxyethylation reaction, like sodium hydroxide concentration during the alkali formation step, ethylene oxide concentration, reaction temperature and reaction duration were studied. Optimum conditions for hydroxyethylation reaction were using 20% NaOH solution and 200% ethylene oxide (based on weight of cellulose), carrying out the reaction at 100 °C for 60 min.  相似文献   

7.
Polymeric hydrogels are crosslinked polymers which display high sorption capacity in water and water solution. In this work, cellulose based hydrogel was prepared with divinylsulfone as crosslinking agent. Cellulose based hydrogel was synthesized as a mixture of sodium salt of carboxymethylcellulose (CMCNa) and hydroxyethylcellulose (HEC). The effect of chemical composition, temperature and reaction time during crosslinking processes was investigated both the value of equilibrium water uptake and swelling ratio. Infrared spectra of the synthesized polymeric networks were studied to investigate the chemical structure of crosslinking reaction qualitatively. The thermal properties and morphology of the obtained cellulose based hydrogels were observed by means of TGA (thermo-gravimetry analysis) and SEM (scanning electron microscopy), respectively. Crosslinking of CMCNa/HEC polymeric network results in a decrease in thermal stability. Hydrogel with weight ratio of CMCNa/HEC 5 to 1 at reaction temperature of 60 °C gave the highest absorption capacity in distilled water.  相似文献   

8.
Synthesis of arsenic (As) adsorbents in pilot scale was carried out with a synthesizing apparatus by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid monomer (PA), which consists of phosphoric acid mono- (50%) and di- (50%) ethyl methacrylate esters onto a nonwoven cotton fabric (NCF), and following chemical modification by contact with a zirconium (Zr) solution. The apparatus which was equipped with reaction tanks, a washing tank and a pump can produce up to 0.3 m×14 m size of the As(V) adsorbent in one reaction. A degree of grafting of 150% was obtained at an irradiation dose of 20 kGy with 5% of PA solution mixed with deionized water for 1 h at 40 °C. Finally, after Zr(IV) was loaded onto a NCF with 5 mmol/L of Zr(IV) solution, the graft adsorbent for the removal of As(V) was achieved in pilot-scale. The adsorbent which was synthesized in pilot scale was evaluated in batch mode adsorption with 1 ppm (mg/l) of As(V) solution for 2 h at room temperature. As a result, the adsorption capacity for As(V) was 0.02 mmol/g-adsorbent.  相似文献   

9.
The development of cheap and efficient proton conducting polymers attracts scientists' attention, resulting in its potential role in fuel cell applications. This work synthesized a novel cellulose acetate-g-poly(sodium 4-styrene sulfonate) via free radical polymerization using potassium persulfate (KPS) as an initiator. The effects of varying KPS concentration, cellulose acetate (CA), sodium 4-styrene sulfonate (Na-SSA) content, reaction time, and temperature on the grafting parameters were studied. Grafting parameters, including the grafting yield (GY %), Add-on (%) and grafting efficiency (GE %) of the grafting reaction, were evaluated. Additionally, FTIR, TGA, DSC, 1HNMR and EDX analyses were studied. The developed graft copolymers membranes illustrated increased water uptake values and ion exchange capacity (IEC) with the add-on (%). Furthermore, the proton conductivity of the developed graft copolymers was found superior (4.77 × 10−3 S.cm−1) to the pristine CA membrane (0.035 × 10−3 S.cm−1).  相似文献   

10.
Cellulose/polyethylene-co-acrylic acid blends (cellulose concentration 0–50 wt.%) was prepared via mixing their alkaline solutions. The formed suspension was precipitated and dried, where after the morphology as well the thermal and mechanical properties of the blends were characterized by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), and Dynamic Mechanical Analyses (DMA). In addition, the melt properties of the blend were studied by rotational rheometer following some injection molding trials as well. The polymers were found to be dispersed homogenously in the blend and the crystallization temperature of the PE-co-AA phase was increased ~6 °C due to the nucleation ability of the cellulose phase. The size of the discontinuous cellulose phase was 5 μm at the most while at higher cellulose concentrations (30–50 wt.%) the polymers formed co-continuous morphology in the blend. This change in the morphology was observed also in their melt properties which showed that the blend reached so called percolation point at ~20 wt.% of cellulose. Finally, the blends were found to be injection moldable over the whole composition range, if only the injection molding became more challenging (i.e. higher mold temperatures and longer mold cooling times were required) after the percholation point.  相似文献   

11.
Hydrogels based on acrylamide monomer (AM) and different ratios (5–20 wt%) of carboxymethyl cellulose (CMC) were synthesized by gamma irradiation. The hydrogels were characterized in terms of gel content, swelling and drug release characters. The effect of temperature and pH on the degree of swelling was also studied. The results showed that the gel fraction of AM/CMC hydrogels decreases greatly with increasing the contents of CMC in the initial feeding solution. The kinetic study showed that the swelling of all the hydrogels tends to reach the equilibrium state after 5 h. However, the swelling of AM/CMC hydrogels was greater than the hydrogel based on pure AM. On the other hand, it was found that the swelling of all the hydrogels changes within the temperature range 30–40 °C and within the pH range 4–8. The AM/CMC hydrogels was evaluated for the possible use in drug delivery systems. In this respect, the release properties of methylene blue indicator, as a drug model, was investigated. It was found that the percentage release from the hydrogels increase with time to reach ~80% after 3 h at pH of 2 compared to ~100% at pH of 8.  相似文献   

12.
An enantioselective membrane was prepared using cellulose acetate butyrate as a membrane material. The flux and permselective properties of membrane using 50% ethanol solution of (R,S)-trans-stilbene oxide as feed solution were studied. The top surface and cross-section morphology of the resulting membrane were examined by scanning electron microscopy. The resolution of over 92% enantiomeric excess was achieved when the enantioselective membrane was prepared with 15 wt % cellulose acetate butyrate and 30 wt % N,N-dimethylformamide in the casting solution of acetone, 10 °C temperature of water bath for the gelation of the membrane, and the operating pressure and the feed concentration of the trans-stilbene oxide were 3 kgf/cm2 and 5.2 mmol/L, respectively. Since the cellulose acetate butyrate contained a large amount of asymmetric carbons on the backbone structure, it was possible to form helical structure, this was considered to be the reason for the enantioselectivity of the membrane.  相似文献   

13.
Graft polymerization of glycidyl methacrylate (GMA) onto polyethylene fiber was carried out in emulsion solution obtained by dissolving GMA in water with sodium n-dodecyl sulfate (SDS) as a surfactant. GMA micelles diameter was 415 nm at 5% GMA with 4% SDS and increased up to 1840 nm at 10% GMA with 12% SDS. Degree of grafting (Dg) which was estimated by the weight gain after grafting increased with the increment of GMA concentration in the range 2 to 8% and slightly reduced at 10% GMA. The increment in SDS concentration from 4% to 16% at 5% GMA reduced Dg from 120% to 18%. In emulsion graft polymerization, Dg was affected by covered area by GMA/SDS micelles on the fiber.  相似文献   

14.
《Comptes Rendus Chimie》2014,17(6):557-562
Chromophoric sensors were made based on 8-hydroxyquinoline immobilized onto a thin film of a polymer blend matrix. The thin films were made by the solution casting method using cellulose triacetate and polyethylene glycol (PEG 600) as plasticizer and pore-forming agent. Different contents of PEG 600 additive were investigated. The prepared films were characterized by FTIR and thermal analysis. The absorption and fluorescence spectra of different films were dependent on the content of PEG 600 with clear quenching of the fluorescence of the film that contains PEG 600 compared to that with zero content. This behavior was attributed to the collective effect of hydrogen bonding (intra- and intermolecular hydrogen bonding) that enhances the process of excited-state proton transfer. This result is favorable to a responsive sensor that shows fluorescence off in the absence of metal ions and fluorescence on upon metal ion chelation. The detection of 5 × 10−5 M of Al3+, Zn2+ and thallium (I) in aqueous solution has been observed with the fluorescence method. The result obtained is consistent with the enhancing effect of PEG 600 in the detectability of metal ions. Compared with the detection of Al3+ and Zn2+, the sensor shows better detection of thallium (I), with clear fluorescence spectra.  相似文献   

15.
 A comparative study of various acrylic monomers for grafting onto natural rubber was done. The stability of natural rubber latex (NRL) against coagulum with monomer, mechanical properties of grafted rubbers and percent of grafting were investigated. The NRL with monomers, methylacrylate (MA), ethylacrylate (EA) and n-butylacrylate (n-BA), is unstable but it is stable with methyl methacrylate (MMA), n-butyl methacrylate (BMA) and cyclohexyl methacrylate (CHMA). The mechanical properties and degree of grafting attained a maximum at a total radiation dose of 4 kGy. The values of tensile properties of MMA and CHMA grafted rubbers are almost similar, and higher than those of BMA grafted rubbers. On the other hand, the degree of grafting for CHMA is higher than those of MMA and BMA grafted rubbers. The infrared (IR) spectra of monomer grafted natural rubber were also studied.  相似文献   

16.
In general, lignocellulosic biomass contains three major components, namely lignin, hemicellulose and cellulose which are the polymers of C5 and C6 sugars. Thus, there is potential to utilize of this biomass for bioethanol production. The hydrolysis of cellulose into glucose was difficult due to the more fibrous nature and thus inhibit enzyme penetration into the cellulose. In order to solve this problem, hydrothermal pretreatment can be used for breaking the bonds within the lignin structure and increase the accessibility of enzyme into the cellulose. In this study, the effect of chemical addition, sodium hydroxide (NaOH) and calcium oxide (CaO) in hydrothermal pretreatment at 180 °C and 30 minutes reaction time of palm oil empty fruit bunches (EFB) on the enzymatic hydrolysis efficiencies was investigated. The enzymatic hydrolysis of hydrothermally pretreated EFB give the highest concentration of glucose at 0.67 g/L while the hydrothermally pretreated of EFB in the presence of NaOH gives the lowest glucose concentration 0.45 g/L.  相似文献   

17.
Radiation-induced molecular imprinting of d-glucose onto poly(2-hydroxyethyl methacrylate) matrix was achieved to create three-dimensional cavities to recognize and bind d-glucose. The optimization of imprinting capability of matrices was achieved by investigating the effects of various parameters such as the type and amount of crosslinking agent, type of solvent, template to monomer ratio and total absorbed dose. Crosslinking agents with increasing chain lengths and different flexibilities were used in an attempt to elucidate the impact of relevant imprint parameters on the effectiveness of imprinting technique. The absorbed dose varied from 1 to 15 kGy. Cavity sizes of MIPs were measured by positron annihilation lifetime (PAL) experiments. Control matrices were synthesized with exactly the same composition in the absence of d-glucose. Separation of d-glucose has been shown to be successfully achieved in HPLC columns filled with MIPs whereas no separation was observed for non-imprint matrices.  相似文献   

18.
Porous composite films containing cellulose nanofibrils (from sisal) and TiO2 nanoparticles (ca. 6 nm diameter) are obtained in a layer-by-layer assembly process. Each layer consists of ca. 0.18 μg cellulose nanofibrils and ca. 0.72 μg TiO2 (determined by QCMB) and adds a thickness of ca. 16 nm (by AFM) to the uniform deposit. The TiO2 nanophase is creating conducting pathways for electrons in a relatively open cellulose structure (ca. 82% open pores) potentially suitable for the immobilization of large redox proteins such as methemoglobin.Methemoglobin is shown to readily adsorb into the cellulose–TiO2 film. However, electrochemical responses for the immobilized methemoglobin in aqueous 0.1 M phosphate buffer at pH 5.5 suggest that facile demetallation occurs. Experiments with Fe3+ in the absence of protein result in voltammetric responses indistinguishable from those observed for immobilized methemoglobin. In the presence of ethylenediamine tetraacetic acid (EDTA) the voltammetric signals for the Fe3+ immediately disappear. Complementary experiments conducted in 0.1 M acetate buffer at pH 5.5 demonstrate that methemoglobin can indeed be immobilized in electrochemically active form and without demetallation loss of the voltammetric signal in the presence of EDTA. Demetallation appears to occur (i) in the presence of phosphate, (ii) at pH 5.5, (iii) and in the presence of a charged surface.  相似文献   

19.
Controlled grafting of MMA onto cellulose and cellulose acetate   总被引:1,自引:0,他引:1  
Homogeneous graft copolymerization of methyl methacrylate onto cellulose and cellulose acetate was carried out in various solvents and solvent systems taking ceric ammonium nitrate, tin (II) 2-ethyl hexanoate [Sn(Oct)2] and benzoyl peroxide as initiators. The effect of solvents, initiators, initiator and monomer concentration, on graft yield, grafting efficiency and total conversion of monomer to polymer were studied. Formation of Ce3+ ion during grafting in presence of CAN enhances the grafting efficiency. Methylene blue was used as a homopolymer inhibitor and controlled the molecular weight of the grafted polymer and its effect on grafting was also studied. In presence of MB, amount of PMMA homopolymer formation reduced and consequently grafting efficiency increased. The number average molecular weights and polydispersity indices of the grafted PMMA were found out by gel permeation chromatography. The products were characterized by FTIR and 1H-NMR analyses and possible reaction mechanisms were deduced. Finally, thermal degradation of the grafted products was also studied by thermo-gravimetric and differential thermo-gravimetric analyses.  相似文献   

20.
Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h?1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号