首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hydrodynamic cavitation for sonochemical effects   总被引:12,自引:0,他引:12  
A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.  相似文献   

2.
Acoustic cavitation, generated by a piezo-driven transducer, is a commonly used technique in a variety of processes, from homogenization, emulsification, and intensification of chemical reactions to surface cleaning and wastewater treatment. An ultrasonic horn, the most commonly used acoustic cavitation device, creates unique cavitation conditions under the horn tip that depend on various parameters such as the tip diameter, the driving frequency of the horn, its amplitude, and fluid properties. Unlike for hydrodynamic cavitation, the scaling laws for acoustic cavitation are poorly understood. Empirical relationships between cavitation dynamics, ultrasonic horn operating conditions, and fluid properties were found through systematic characterization of cavitation under the tip. Experiments were conducted in distilled water with various sodium chloride salt concentrations under different horn amplitudes, tip geometries, and ambient pressures. Cavitation characteristics were monitored by high-speed (200,000 fps) imaging, and numerous relations were found between operating conditions and cavitation dynamics. The compared results are discussed along with a proposal of a novel acoustic cavitation parameter and its relationship to the size of the cavitation cloud under the horn tip. Similar to the classical hydrodynamic cavitation number, the authors propose for the first time an acoustic cavitation parameter based on experimental results.  相似文献   

3.
In the present work, a cavity cluster of predetermined size has been considered to study the bubble dynamics in the hydrodynamic cavitation reactor. The effect of different operating and system parameters on the cavitational intensity has been numerically investigated. The yield of any cavitationally induced physical/chemical transformations depends not only on the collapse pressure of the cavities but also on the active volume of cavitation within the reactor. Empirical correlations have been developed to predict the collapse pressure and the active volume of cavitation as a function of different operating parameters based on the bubble dynamics studies. Recommendations are made for designing a cavitational reactor on the basis of the proposed empirical correlations. This work is a first step towards the designing and optimization of hydrodynamic cavitational reactor with cluster approach.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(6):2069-2083
Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.  相似文献   

5.
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed.In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented.In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater.As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants.The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(4):1392-1399
Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters.  相似文献   

7.
Oxidation of toluene using aqueous potassium permanganate was studied under heterogeneous condition in the presence of hydrodynamic cavitation and compared with the results of the reaction under acoustic cavitation. Various parameters, such as quantity of potassium permanganate, toluene to aqueous phase ratio, reaction time and cavitation parameters such as orifice plate, and pump discharge pressure were optimized. The reaction was found to be considerably accelerated at ambient temperature in the presence of cavitation. On comparison, it was found that when 1 kJ of energy was passed to the reaction mixture in the case of acoustic cavitation, the product obtained was 4.63 x 10(-6) mol, whereas when 1 kJ of energy was passed to the reaction mixture in the case of hydrodynamic cavitation the product obtained was 2.70 x 10(-5) mol. Hence, about six times more product would be obtained in the case of hydrodynamic cavitation than in the case of acoustic cavitation at same energy dissipation. It has been observed that further optimization is possible.  相似文献   

8.
9.
Cavitation holds the promise of a new and exciting approach to fabricate both top down and bottom up nanostructures. Cavitation bubbles are created when a liquid boils under less than atmospheric pressure. The collapse process occurs supersonically and generates a host of physical and chemical effects. We have made an attempt to fabricate natural cellulose material using hydrodynamic as well as acoustic cavitation. The cellulose material having initial size of 63 micron was used for the experiments. 1% (w/v) slurry of cellulose sample was circulated through the hydrodynamic cavitation device or devices (orifice) for 6 h. The average velocity of the fluid through the device was 10.81 m/s while average pressure applied was 7.8 kg/cm2. Cavitation number was found to be 2.61. The average particle size obtained after treatment was 1.36 micron. This hydrodynamically processed sample was sonicated for 1 h 50 min. The average size of ultrasonically processed particles was found to be 301 nm. Further, the cellulose particles were characterized with X-ray diffraction (XRD) and differential scanning calorimetry (DSC) to see the effect of cavitation on crystallinity (Xc) as well as on melting temperature (Tm). Cellulose structures consist of amorphous as well as crystalline regions. The initial raw sample was 86.56% crystalline but due to the effect of cavitation, the crystallinity reduced to 37.76%. Also the melting temperature (Tm) was found to be reduced from 101.78 °C of the original to 60.13 °C of the processed sample. SEM images for the cellulose (processed and unprocessed) shows the status and fiber–fiber alignment and its orientation with each other. Finally cavitation has proved to be very efficient tool for reduction in size from millimeter to nano scale for highly crystalline materials.  相似文献   

10.
In this paper, a novel flotation technique that combines nano-scale bubbles generated by hydrodynamic cavitation (HC) and carrier flotation is proposed to promote the flotation efficiency of a high-ash (43%) ultra-fine coal sample (<45 µm). We investigated the mechanism by which cavitation bubbles enhance the separation efficiency of carrier flotation using focused beam reflectance measurements, polarizing microscopy, and extended Derjaguin–Landau–Verwey–Overbeek theory. The carrier particles (polystyrene (PS)) and fine coal were pre-treated in a venturi tube and then floated in a laboratory mechanical flotation cell. The flotation results indicate that the presence of cavitation bubbles significantly improved the carrier flotation performance of high-ash ultra-fine coal. This improvement was attributed to the presence of highly hydrophobic PS, which creates additional gas nuclei in the flotation system. The nano-bubbles, which were produced by the venturi tube and adhered to the fine coal particle surfaces, were conducive to the agglomeration of fine coal particles into large aggregates. Moreover, the nano-bubbles functioned as “bridges” of interaction between the carrier particles and large aggregates of fine coal particles. This paper mainly focused on the effect of carrier (PS) and HC on high-ash fine coal. The influence of different HC intensities on carrier (PS) flotation was discussed. Two models for the interactions between the coal particles, nano-bubbles, and PS during cavitation were proposed and were proved using the E-DLVO theory.  相似文献   

11.
In the present work the effect of dissolved gases on the extent of ultrasonically induced microbial cell disruption has been explored using a mathematical model and it has been validated by experimental data from literature. Degassing experiments are carried out and a degassing kinetics model for horn type ultrasonic device is presented. An overall model combining hydrodynamic and kinetics of cell disruption for horn type reactor is then proposed. The model includes several important operational parameters such as stress generated by the cavity, cell wall strength, dissolved gas concentration, degassing due to sonication, acoustic streaming generated due to sonication and attenuation of ultrasound in water. Model basically realizes in categorizing the volume of sonochemical reactor as active cavitation zone (ACZ) and inactive cavitation zone (ICZ). All the transformations are seen to occur only in ACZ. The two regions, i.e. ACZ and ICZ are assumed to behave as two mixed flow reactor arranged in closed loop. Suggestions have been also made for efficient design and scale up of ultrasonic devices for microbial cell disruption. The same model can be extended for other applications like particle size reduction, nano particle synthesis, leaching, emulsification with the knowledge of critical rate controlling parameter.  相似文献   

12.
Cavitation results in conditions of turbulence and liquid circulation in the reactor which can aid in eliminating mass transfer resistances. The present work illustrates the use of cavitation for intensification of biodiesel synthesis (esterification) reaction, which is mass transfer limited reaction considering the immiscible nature of the reactants, i.e., fatty acids and alcohol. Esterification of fatty acid (FA) odour cut (C(8)-C(10)) with methanol in the presence of concentrated H(2)SO(4) as a catalyst has been studied in hydrodynamic cavitation reactor as well as in the sonochemical reactor. The different reaction operating parameters such as molar ratio of acid to alcohol, catalyst quantity have been optimized under acoustic as well as hydrodynamic cavitating conditions in addition to the optimization of the geometry of the orifice plate in the case of hydrodynamic cavitation reactors. Few experiments have also been carried out with other acid (lower and higher)/methanol combination viz. caprylic acid and capric acids with methanol with an aim of investigating the efficacy of cavitation for giving the desired yields and also to quantify the degree of process intensification that can be achieved using the same. It has been observed that ambient operating conditions of temperature and pressure and reaction times of <3h, for all the different combinations of acid (lower and higher)/methanol studied in the present work, was sufficient for giving >90% conversion (mol%). This clearly establishes the efficacy of cavitation as an excellent way to achieve process intensification of the biodiesel synthesis process.  相似文献   

13.
Various alkylarenes were oxidized to the corresponding aryl carboxylic acids using aqueous potassium permanganate under heterogeneous condition in the presence of hydrodynamic cavitation and the results of the reaction have been compared with the acoustic cavitation in terms of their energy efficiency. The rate of reaction was determined for each reaction. In the oxidation of p-xylene, seven times more product could be obtained in the case of hydrodynamic cavitation than in the case of acoustic cavitation. The reaction was found to be considerably accelerated at ambient temperature.  相似文献   

14.
Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.  相似文献   

15.
The development of electrodeposited materials with improved technological properties has been attracting the attention of researchers and companies from different industrial sectors. Many studies have demonstrated that the electrodeposition and synthesis of alloys and composite materials assisted by ultrasound may promote the de-agglomeration of particles in the electrolytic solution due to microturbulence, microjets, shock waves, and breaking of Van der Waals forces. The sonoelectrochemical technique, in which the ultrasound probe acts as a working electrode, also has been used for the formation of nanostructures in greater quantity, in addition to accelerating the electrolysis process and eliminating the reaction products on the electrode surface. Regarding the morphological aspects, the acoustic cavitation promotes the formation of smooth and uniform surfaces with incorporated particles homogeneously distributed. These changes have a direct impact on the composition and physical properties of the material, such as corrosion resistance, magnetization, wear, and microhardness. Despite the widespread use of acoustic cavitation in the synthesis of nanostructured materials, the discussion of how process variables such as acoustic power, frequency, and type of ultrasound device, as well as their effects still are scarce. In this sense, this review discusses the influence of ultrasound technology on obtaining electrodeposited coatings. The trends and challenges in this research field were reviewed from 2014 to 2019. Moreover, the effects of process variables in electrodeposition and how these ones change the technological properties of these materials were evaluated.  相似文献   

16.
In the present work, the current status of the hydrodynamic cavitation reactors has been reviewed discussing the bubble dynamics analysis, optimum design considerations, design correlations for cavitational intensity (in terms of collapse pressure)/cavitational yield and different successful chemical synthesis applications clearly illustrating the utility of these types of reactors. The theoretical discussion based on the modeling of the bubble dynamics equations aims at understanding the design information related to the dependency of the cavitational intensity on the operating parameters and recommendations have been made for the choice of the optimized conditions of operating parameters. The design information based on the theoretical analysis has also been supported with some experimental illustrations concentrating on the chemical synthesis applications. Assessment of the hydrodynamic cavitation reactors and comparison with the sonochemical reactors has been done by citing the different industrially important reactions (oxidation of toluene, o-xylene, m-xylene, p-xylene, mesitylene, o-nitrotoluene, p-nitrotoluene, m-nitrotoluene, o-chlorotoluene and p-chlorotoulene, and trans-esterification reaction i.e., synthesis of bio-diesel). Some recommendations have also been made for the future work to be carried out as well as the choice of the operating conditions for realizing the dream of industrial scale applications of the cavitational reactors.  相似文献   

17.
Bubble clusters in hydrodynamic cavitation, acoustic cavitation and hydrodynamic-acoustic cavitation (HAC) are investigated via high-speed photography. By introducing a cavitation state variable, a method for cavitation characterization is proposed. The periodic characteristics and intensity distributions of hydrodynamic cavitation, acoustic cavitation and HAC are quantitatively analyzed using this method. It is found that the range of HAC is evidently widened and the strength of HAC is significantly enhanced compared with hydrodynamic cavitation or acoustic cavitation. Furthermore, we developed a preliminary physical model describing the dynamics of a cavitation bubble in HAC and proposed a mechanism to explain the enhancement of the intensity in HAC.  相似文献   

18.
For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.  相似文献   

19.
Within the last years there has been a substantial increase in reports of utilization of hydrodynamic cavitation in various applications. It has came to our attention that many times the results are poorly repeatable with the main reason being that the researchers put significant emphasis on the value of the cavitation number when describing the conditions at which their device operates.In the present paper we firstly point to the fact that the cavitation number cannot be used as a single parameter that gives the cavitation condition and that large inconsistencies in the reports exist. Then we show experiments where the influences of the geometry, the flow velocity, the medium temperature and quality on the size, dynamics and aggressiveness of cavitation were assessed. Finally we show that there are significant inconsistencies in the definition of the cavitation number itself.In conclusions we propose a number of parameters, which should accompany any report on the utilization of hydrodynamic cavitation, to make it repeatable and to enable faster progress of science and technology development.  相似文献   

20.
This study brings out the potential efficacy of hybrid techniques for water disinfection. The techniques studied include, hydrodynamic cavitation, acoustic cavitation and treatment with chemicals such as ozone and hydrogen peroxide. The phenomena of cavitation which involves formation, growth and violent collapse of vapor bubbles in a liquid media is known to generate a high intensity pressure which affects the cell and microorganism viability. The hybrid technique which combines hydrodynamic cavitation, acoustic cavitation, hydrogen peroxide and/or ozone appears to be an attractive alternative to a single technique for the reduction in the heterotropic plate count bacteria as well as indicator microorganisms like the Total coliforms, Fecal coliforms and Fecal streptococci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号