首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A method for the parameterization of the one-dimensional wave equation is proposed that makes it possible to find its solution by quadratures under an arbitrary dependence of the refraction index on the current wave phase. The form of the solution found is used to investigate the structure of the wave function for a periodic refraction index. Explicit expressions for the fundamental system of solutions and for the Floquet index are obtained. Examples of applying the proposed method to the optimal synthesis of multilayer interference mirrors and Bragg waveguides are discussed.  相似文献   

2.
We obtain an analytical solution of a boundary value problem for a viscous incompressible nonisothermal fluid assuming an exponential–power law dependence of the fluid viscosity on temperature. A uniqueness theorem for the Navier–Stokes equation linearized with respect to the velocity is proved. We obtain expressions for the mass velocity components and pressure. The solution of the boundary value problem is sought in the form of an expansion in Legendre polynomials.  相似文献   

3.
We consider a controlled functional-operator equation that is a convenient form for describing of controlled initial-boundary value problems. For this equation, considered in a Banach ideal space, we define the set Ω of global solvability as the set of all admissible controls for which the equation has a global solution. We show that Ω is convex under the conditions imposed on the right-hand side of the equation. For each control in a given segment in Ω, we obtain a two-sided pointwise estimate for the corresponding solution under the abovementioned assumptions. We prove the theorem on the convex continuous dependence of the solution on the parameter specifying the displacement along the segment.  相似文献   

4.
This paper presents a new approximate method of Abel differential equation. By using the shifted Chebyshev expansion of the unknown function, Abel differential equation is approximately transformed to a system of nonlinear equations for the unknown coefficients. A desired solution can be determined by solving the resulting nonlinear system. This method gives a simple and closed form of approximate solution of Abel differential equation. The solution is calculated in the form of a series with easily computable components. The numerical results show the effectiveness of the method for this type of equation. Comparing the methodology with some known techniques shows that the present approach is relatively easy and highly accurate.  相似文献   

5.
The problem of the half-plane, in which a finite crack emerges orthogonally at the boundary, is studied. On the edges of the crack a self-balancing load is applied. A detailed investigation is carried out for an integral equation with respect to the unknown derivative of the displacement jump, to which the problem can be reduced. The exact solution of the integral equation is constructed with the aid of the Mellin transform and the Riemann boundary value problem for the halfplane. The asymptotic behavior of the solution at both ends of the crack is elucidated. First the asymptotic behavior of the solution at the point of emergence of the crack is obtained and the dependence of this asymptotic behavior on the type of the load is established. For a special form of the load one obtains a simple expression of the stress intensity coefficient. In the case of a general load, the asymptotic behavior is used for the construction of an effective approximate solution on the basis of the method of orthogonal polynomials. As a result, the problem reduces to an infinite algebraic system, solvable by the reduction method.Translated from Dinamicheskie Sistemy, No. 4, pp. 45–51, 1985.  相似文献   

6.
The purpose of this paper is to investigate the Cauchy problem of the Camassa-Holm equation. By using the abstract method proposed and studied by T. Kato and priori estimates, the existence and uniqueness of the global solution to the Cauchy problem of the Camassa-Holm equation in L p frame under certain conditions are obtained. In addition, the continuous dependence of the solution of this equation on the linear dispersive coefficient contained in the equation is obtained.  相似文献   

7.
8.
A system of m (≥2) linear convection-diffusion two-point boundary value problems is examined,where the diffusion term in each equation is multiplied by a small parameterεand the equations are coupled through their convective and reactive terms via matrices B and A respectively.This system is in general singularly perturbed. Unlike the case of a single equation,it does not satisfy a conventional maximum princi- ple.Certain hypotheses are placed on the coupling matrices B and A that ensure exis- tence and uniqueness of a solution to the system and also permit boundary layers in the components of this solution at only one endpoint of the domain;these hypotheses can be regarded as a strong form of diagonal dominance of B.This solution is decomposed into a sum of regular and layer components.Bounds are established on these compo- nents and their derivatives to show explicitly their dependence on the small parameterε.Finally,numerical methods consisting of upwinding on piecewise-uniform Shishkin meshes are proved to yield numerical solutions that are essentially first-order conver- gent,uniformly inε,to the true solution in the discrete maximum norm.Numerical results on Shishkin meshes are presented to support these theoretical bounds.  相似文献   

9.
D. Medková 《Acta Appl Math》2011,116(3):281-304
A weak solution of the Neumann problem for the Stokes system in Sobolev space is studied in a bounded Lipschitz domain with connected boundary. A solution is looked for in the form of a hydrodynamical single layer potential. It leads to an integral equation on the boundary of the domain. Necessary and sufficient conditions for the solvability of the problem are given. Moreover, it is shown that we can obtain a solution of this integral equation using the successive approximation method. Then the consequences for the direct boundary integral equation method are treated. A solution of the Neumann problem for the Stokes system is the sum of the hydrodynamical single layer potential corresponding to the boundary condition and the hydrodynamical double layer potential corresponding to the trace of the velocity part of the solution. Using boundary behavior of potentials we get an integral equation on the boundary of the domain where the trace of the velocity part of the solution is unknown. It is shown that we can obtain a solution of this integral equation using the successive approximation method.  相似文献   

10.
板弯曲问题的具两组高阶基本解序列的MRM方法   总被引:1,自引:0,他引:1  
讨论了双参数地基上薄板弯曲问题.利用两组高阶基本解序列,即调和及重调和基本解序列,采用多重替换方法(MRM方法),得到了板弯曲问题的MRM边界积分方程.证明了该方程与边值问题的常规边界积分方程是一致的.因此由常规边界积分方程的误差估计即可得到板弯曲问题MRM方法的收敛性分析.此外该方法还可推广到具多组高阶基本解序列的情形.  相似文献   

11.
We obtain a solution to a boundary-value problem of a flow of spherical form particle for stationary system of equations of viscous non-isothermal gaseous medium including the Stokes equation, heat conductivity equation, and state equation with account taken of dependence of viscosity, heat conductivity, and density of gaseous medium on temperature.  相似文献   

12.
A system of two coupled singularly perturbed convection–diffusion ordinary differential equations is examined. The diffusion term in each equation is multiplied by a small parameter, and the equations are coupled through their convective terms. The problem does not satisfy a conventional maximum principle. Its solution is decomposed into regular and layer components. Bounds on the derivatives of these components are established that show explicitly their dependence on the small parameter. A numerical method consisting of simple upwinding and an appropriate piecewise-uniform Shishkin mesh is shown to generate numerical approximations that are essentially first order convergent, uniformly in the small parameter, to the true solution in the discrete maximum norm.   相似文献   

13.
就"常系数非齐次线性微分方程"的讲授设计了一种不同于教材的教学安排,并就文章所给的辅助方程法和教材的解法进行了比较.  相似文献   

14.
The paper addresses a nonlinear heat equation (the porous medium equation) in the case of a power-law dependence of the heat conductivity coefficient on temperature. The equation is used for describing high-temperature processes, filtration of gases and fluids, groundwater infiltration, migration of biological populations, etc. The heat waves (waves of filtration) with a finite velocity of propagation over a cold background form an important class of solutions to the equation under consideration. A special boundary value problem having solutions of such type is studied. The boundary condition of the problem is given on a sufficiently smooth closed curve with variable geometry. The new theorem of existence and uniqueness of the analytic solution is proved.  相似文献   

15.
This paper is concerned with the solution of the matrix Riccati differential equation with a terminal boundary condition. The solution of the matrix Riccati equation is given by using the solution of the algebraic form of the Riccati equation. An illustrative example for the proposed method is given.  相似文献   

16.
We study how to transform Cauchy problems for Volterra integro-differential equations with functional delays to resolving Volterra integral equations with conventional argument by using a modification of a function of flexible structure. We show that such a transformation is possible for all linear Volterra integro-differential equations of retarded type. There exists a unique solution of the resolving equation provided that the kernels and the right-hand side are bounded in the closed square. The presence of parameters in the expression for the function of flexible structure permits one to choose these parameters in an optimal way in the course of the solution of the problem so as to represent the solution in closed form or, if this is difficult, optimize an approximate solution method. The accuracy of the approximate solutions is estimated.  相似文献   

17.
The time-dependent differential equations of elasticity for 2D quasicrystals with general structure of anisotropy (dodecagonal, octagonal, decagonal, pentagonal, hexagonal, triclinic) are considered in the paper. These equations are written in the form of a vector partial differential equation of the second order with symmetric matrix coefficients. The fundamental solution (matrix) is defined for this vector partial differential equation. A new method of the numerical computation of values of the fundamental solution is suggested. This method consists of the following: the Fourier transform with respect to space variables is applied to vector equation for the fundamental solution. The obtained vector ordinary differential equation has matrix coefficients depending on Fourier parameters. Using the matrix computations a solution of the vector ordinary differential equation is numerically computed. Finally, applying the inverse Fourier transform numerically we find the values of the fundamental solution. Computational examples confirm the robustness of the suggested method for 2D quasicrystals with arbitrary type of anisotropy.  相似文献   

18.
An asymptotic method is proposed for solving transient dynamic contact problems of the theory of elasticity for a thin strip. The solution of problems by means of the integral Laplace transformation (with respect to time) and the Fourier transformation (with respect to the longitudinal coordinate) reduces to an integral equation in the form of a convolution of the first kind in the unknown Laplace transform of contact stresses under the punch. The zeroth term of the asymptotic form of the solution of the integral equation for large values of the Laplace parameter is constructed in the form of the superposition of solutions of the corresponding Wiener-Hopf integral equations minus the solution of the corresponding integral equation on the entire axis. In solving the Wiener-Hopf integral equations, the symbols of the kernel of the integral equation in the complex plane is presented in special form — in the form of uniform expansion in terms of exponential functions. The latter enables integral equations of the second kind to be obtained for determining the Laplace-Fourier transform of the required contact stresses, which, in turn, is effectively solved by the method of successive approximations. After Laplace inversion of the zeroth term of the asymptotic form of the solution of the integral equations, the asymptotic solution of the transient dynamic contact problem is determined. By way of example, the asymptotic solution of the problem of the penetration of a plane punch into an elastic strip lying without friction on a rigid base is given. Formulae are derived for the active elastic resistance force on the punch of a medium preventing the penetration of the punch, and the law of penetration of the punch into the elastic strip is obtained, taking into account the elastic stress wave reflected from the strip face opposite the punch and passing underneath it.  相似文献   

19.
This article proves the existence and uniqueness of the solution obtained by the hybridizable discontinuous Galerkin (HDG) method of the fractional Volterra‐Fredholm integro differential equation. The method based on local solvers and transmission condition is applied to the equation using two auxiliary variables. The form of the equation is amenable for achieving the solvability criteria of the problem according to the HDG method. We also calculate a numerical solution of the problem whose exact solution is taken as a smooth or fractional function. This results in a tridiagonal, symmetric, and positive definite stiffness matrix.  相似文献   

20.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号