首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vibrational Spectroscopy》2001,25(2):133-149
Equilibrium geometries, rotational constants, harmonic vibrational frequencies, infrared intensities, Raman activities, and 1H and 13C NMR spectra were calculated for 1,2-dimethylenecyclobutane and its less stable isomer 1,3-dimethylenecyclobutane by using MP2, DFT (B3PW91), and RHF theoretical methods involving the 6-311++G7 basis set.The properties calculated theoretically have been compared with the experimental values. The internal coordinates defined for both isomers were used in the potential energy distribution (PED) analysis. The theoretical vibrational and NMR spectra form the basis to differentiate particular compounds in reaction mixture.  相似文献   

2.
The X-ray and vibrational spectroscopic analysis of para-nitraminopyridine N-oxide are reported. The crystals of investigated compound belong to P2(1) of the monoclinic system, Z=4, a=3.735 A, b=11.767 A, c=14.679 A and beta=93.27 degrees . Room temperature powder infrared and Raman spectra of the title compound and its deuterated analogue were measured. The molecular structure of p-nitraminopyridine N-oxide has been calculated with the aid of density functional (B3LYP) method with the extended 6-311++G(d,p) basis set. The calculated geometrical parameters of investigated molecule in gas phase were compared with experimental X-ray data. The harmonic frequencies, potential energy distribution (PED) and IR intensities of p-nitroaminopyridine N-oxide and its deuterated analogue were calculated with B3LYP method. The assignment of the experimental spectra has been made on the basis of the calculated PED. The time depend Hartree-Fock (TDHF) method was used for calculations of hyperpolarizability beta coefficient.  相似文献   

3.
《Vibrational Spectroscopy》2000,22(1-2):157-161
IR spectra were calculated for CO2, ammonia, (2:1) ammonia–CO2 complex, carbamic acid, and (1:1) ammonia–carbamic acid complex at the B3PW91/6-311++G** level. For the spectra predicted, a potential energy distribution (PED) was calculated to form the basis for the elucidation of experimental IR data.  相似文献   

4.
The Fourier transform Raman and Fourier transform infrared spectra of 5-bromo-2-nitropyridine were recorded in the solid phase. The equilibrium geometry, natural atomic charges, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. A detailed interpretations of the infrared and Raman spectra of 5-bromo-2-nitropyridine is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrograms for the Raman and IR spectra of the title molecule have been constructed.  相似文献   

5.
The herbicide 2(4-chlorophenoxy)-2-methyl propionic acid (MCPP) has been subjected to NIR FT-Raman and infrared spectral studies. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with the standard 6-31G(d) basis set. The calculated molecular geometry has been compared with the XRD data. The detailed assignments of the normal modes have been performed based on the potential energy distribution (PED) following the scaled quantum mechanical force field (SQMFF) methodology. The IR and Raman spectra have been plotted for the calculated wavenumbers. The simulated spectra satisfactorily coincide with the experimental spectra. The strong hyperconjugative interaction and charge delocalization that leads to the stability of the molecule have been investigated with the aid of natural bond orbital (NBO) analysis.  相似文献   

6.
In the present study, a systematic vibrational spectroscopic investigation for the experimental IR and Raman spectra of 2,3,4-trifluorobenzonitrile (TFB), aided by electronic structure calculations has been carried out. The electronic structure calculations – ab initio (RHF) and hybrid density functional methods (B3LYP) – have been performed with 6-31G* basis set. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. The results of the calculations have been used to simulate IR and Raman spectra for TFB that showed excellent agreement with the observed spectra. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed. A complete assignment of the observed spectra has been proposed.  相似文献   

7.
Density functional theoretical (DFT) calculations using the 6-311+G* basis set were carried out to study the vibrational spectrum of E-1,2-bis(3-methoxy-2-thienyl)ethene in the solid state. Based on the calculated frequencies, infrared intensities and potential energy distributions (PED), the experimental IR and Raman spectra of the solid phase were assigned.  相似文献   

8.
The room temperature X-ray studies of L-lysine x tartaric acid complex are not unambiguous. The disorder of three atoms of carbon in L-lysine molecule is observed. These X-ray studies are ambiguous. The theoretical geometry study performed by DFT methods explain the most doubts which are connected with crystallographic measurements. The theoretical vibrational frequencies and potential energy distribution (PED) of L-lysine x tartaric acid were calculated by B3LYP method. The calculated frequencies were compared with experimental measured IR spectra. The complete assignment of the bands has been made on the basis of the calculated PED. The restricted Hartee-Fock (RHF) methods were used for calculation of the hyperpolarizability for investigated compound. The theoretical results are compared with experimental value of beta.  相似文献   

9.
The infrared (IR) spectra of the supersonic-jet cooled 9H- and 7H-tautomers of 2-aminopurine (2AP) and of the 9H-2-aminopurine·H(2)O monohydrate clusters have been measured by mass- and species-selective IR-UV double resonance spectroscopy in the 3200-3900 cm(-1) region, covering the N-H and O-H stretching vibrations. The spectra are complemented by density functional (B3LYP and PW91) and by second-order M?ller-Plesset (MP2) calculations of the electronic energies and vibrational frequenciesof the respective 2AP tautomers and clusters. The 9H- and 7H-2-aminopurine tautomers were definitively identified by the shifts of their NH and NH(2) symmetric and asymmetric stretching frequencies and by comparison to the B3LYP/TZVP calculated IR spectra. The H-bond topologies of the two previously observed 9H-2-aminopurine·H(2)O isomers (Sinha. R. K.; et al. J. Phys. Chem. A2011, 115, 6208) are definitively identified as the "sugar-edge" isomer A and the "trans-amino-bound" isomer B by comparing their IR spectra to the calculated frequencies and IR intensities of the cluster isomers A, B, C, and D, as well as to the IR spectrum of 9H-2AP. The sugar-edge isomer A involves N9-H···OH(2) and HOH···N3 hydrogen bonds and is predicted to be the most stable form. The amino-bound isomer B involves NH(2)···OH(2) and HOH···N1 hydrogen bonds and is calculated to lie 2.5 kJ/mol above isomer A. The H-bond topology of the "cis-amino-bound" isomer C is symmetrically related to isomer B, with a hydrogen bond to the N3 of the pyrimidine group. However, it is calculated to lie 7 kJ/mol above isomer A and indeed is not observed in the supersonic jet. Isomer D involves a single H-bond to the N7 position, is predicted to be 14 kJ/mol above A and is therefore not observed.  相似文献   

10.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

11.
A systematic vibrational spectroscopic assignment and analysis of benzohydrazide (BH) has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis were aided by electronic structure calculations--ab initio (RHF) and hybrid density functional methods (B3LYP and B3PW91) performed with 6-31G(d,p) and 6-311++G(d,p) basis sets. Molecular equilibrium geometries, electronic energies, IR intensities, harmonic vibrational frequencies, depolarization ratios and Raman activities have been computed. Potential energy distribution (PED) and normal mode analysis have also been performed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties, such as HOMO and LUMO energies and λ(max) were determined by time-dependent DFT (TD-DFT) method. The geometrical, thermodynamical parameters and absorption wavelengths were compared with the experimental data. The interactions of carbonyl and hydrazide groups on the benzene ring skeletal modes were investigated.  相似文献   

12.
Cyclic acrylates, 2,2- dimethyl-5-methylene-1 , 3-dioxolan-4 -one and 2- phenyl-5-methylene-1,3-dioxolan-4-one, were synthesized successfully. The monomers were characterized by ~1H NMR, ~(13)C NMR, IR and elemental analysis or HRMS. Polymerization of the monomers were carried out at 120℃with di-t-butylperoxide as initiator. The polymers were studied by ~1H NMR, ~(13)C NMR, UV and hydrolysis. The molecular weights of the resulting polymers were estimated by viscosity measurement and the extent of ring opening was estimated also by ~1H NMR and hydrolysis of the polymers and further confirmed by UV spectra.  相似文献   

13.
The infrared and Raman spectra of 2-hydroxy-3-methoxy-N-(2-chloro-benzyl)-benzaldehyde-imine (HMCBI) have been recorded and analyzed. Density functional calculations at B3LYP/6-311++G(d,p) level were carried out to study the equilibrium geometries and vibrational spectra of HMCBI. The calculations revealed that the optimized geometry closely resembled the experimental XRD data. The calculated vibrational spectra were analyzed on the basis of the potential energy distribution (PED) of each vibrational mode, which allowed us to obtain a quantitative as well as qualitative interpretation of IR and Raman spectra. The 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule in the ground state were calculated by Gauge independent atomic orbital (GIAO) method. Information about size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surface. Based on optimized ground state geometries, the NBO analysis has been done to study donor–acceptor (bond–antibond) interactions. The TD-DFT method has been used to calculate energies, oscillator strengths of electronic singlet–singlet transitions and the absorption wavelengths. Solvent effects were considered using the polarizable continuum model (PCM). Good consistency is found between the calculated results and experimental data for the electronic absorption. The calculated first hyperpolarizability may be attractive for further studies on non-linear optical properties of materials.  相似文献   

14.
Molecular structures of Dy(3)N@C(78) and Tm(3)N@C(78) clusterfullerenes are addressed by the IR and Raman vibrational spectroscopic studies and density functional theory (DFT) computations. First, extensive semiempirical calculations of 2927 isomers of C(78) hexaanions followed by DFT optimization were applied to establish their relative stability. Then, DFT calculations of a series of M(3)N@C(78) (M = Sc, Y, Lu, La) isomers were performed which have shown that the stability order of the isomers depends on the cluster size. While the Sc(3)N cluster is planar in the earlier reported Sc(3)N@C(78) (D(3)h: 24,109) clusterfullerenes, relatively large Y(3)N and Lu(3)N clusters would be forced to be pyramidal inside this cage, which would result in their destabilization. Instead, these clusters remain planar in the nonisolated pentagon rule (non-IPR) C(2): 22,010 isomer making Y(3)N@C(78) and Lu(3)N@C(78) clusterfullerenes with this cage structure the most stable ones. Finally, on the basis of a detailed analysis of their IR and Raman spectra supplemented with DFT vibrational calculations, the recently isolated Tm(3)N@C(78) and the major isomer of Dy(3)N@C(78) are assigned to the non-IPR C(2): 22,010 cage structure. A detailed assignment of their experimental and computed IR and Raman spectra is provided to support this conclusion and to exclude other cage isomers.  相似文献   

15.
The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm(-1) and 50-3500 cm(-1), respectively. In addition, the IR spectra in CCl(4) at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.  相似文献   

16.
Copolymerizations of 4-methylene-2-styryl-1,3-dioxolane ( 1 ) and 4-methylene-2-methyl-2-styryl-1,3-dioxolane ( 2 ) with electron-deficient monomers, such as maleic anhydride (MA) and acrylonitrile (AN) were investigated. Only homopolymer of 1 was obtained from the copolymerization of 1 with MA in the presence or absence of AIBN. The copolymerization of 1 and AN with AIBN as initiator gave a copolymer consisting of three kinds of repeating units. Reaction of 2 with MA gave a crystalline product with and without AIBN present. A nine-membered ring structure is proposed for this product based on its IR, UV, proton and 13C-NMR spectra, as well as elemental analysis. No polymer was obtained from the copolymerization of 2 and AN with or without AIBN initiator. Based on the structures of the products obtained from the copolymerization, a number of polymerization mechanisms are proposed. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
IR and Raman spectra of two fluorofullerenes, C60F48 and C60F36, are thoroughly studied. Assignment of the experimental spectra is provided on the basis of density functional theory (DFT) computations. Perfect correspondence between experimental and computed spectra enabled us to confirm that the major isomer of C60F48 has D3 symmetry. It was found that as-synthesized samples of C60F36 consist mainly of C3 and C1 isomers in ca. 2:1 ratio and 2-3% of T-symmetric structures. Extensive AM1 and DFT computations have shown that all three structures are the most stable isomers of C60F36. Previous structural assignment of the C3 isomer (Gakh, A. A.; Tuinman, A. A. Tetrahedron Lett. 2001, 42, 7137-7139) was confirmed by the vibrational data.  相似文献   

18.
FT-IR and Raman spectra of 5-o-tolyl-2-pentene (OTP) have been experimentally reported in the region of 4000-10 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of cis and trans isomers of OTP (C12H16) have been theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31G(d) and 6-31++G(d,p) basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated. Comparison between the experimental and theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting vibrational wavenumbers and trans isomer is supposed to be the most stable form of OTP molecule.  相似文献   

19.
用密度泛函方法B3LYP/aug-cc-pVTZ分析了腺嘌呤和质子化腺嘌呤的低能稳定异构体的结构和振动光谱. 结果发现, 对于中性腺嘌呤分子, 腺嘌呤的异构体N9H比N7H的能量低32.76 kJ·mol-1(在极化连续模型下为6.28 kJ·mol-1). 基于标度量子力场方法所得到的势能分布, 对异构体N9H的部分振动基频重新进行了归属. 在极化连续模型下, 质子化腺嘌呤分子有5种低能稳定构型, 其中N1位质子化的9-位氢腺嘌呤最为稳定. 基于振动模式分析, 对这种最稳定构型的振动基频进行了归属, 并对腺嘌呤在pH=1的高氯酸溶液中的实验拉曼光谱进行了指认.  相似文献   

20.
Quantum chemical calculations of energies, geometrical structural parameters, harmonic and anharmonic frequencies of 2,4-DCP and 4,6-DCP were carried out by HF and density functional theory methods with 6-311++G(d,p) as basis set. The assignment of each normal mode has been made using the observed and calculated frequencies, their IR and Raman intensities. A detailed interpretation of the FT-IR and FT-Raman spectra of 2,4-DCP and 4,6-DCP was reported on the basis of the calculated potential energy distribution (PED). A comparison of theoretically calculated vibrational frequencies at B3LYP/6-311++G(d,p) with FT-IR and FT-Raman experimental data shows good agreement between them. Natural atomic charges of 2,4-DCP and 4,6-DCP were calculated and compared with pyrimidine molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号