首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the title compound, [Mn(C5H2N2O4)(H2O)2]n, the MnII ion has a distorted octahedral geometry and the 4‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (Hiso2−) anion acts as a μ34‐bridging ligand. Two oxo O atoms from different Hiso2− ligands bridge two MnII ions, forming centrosymmetric dinuclear building blocks. Each dinuclear building block interacts with another four by the coordination of the oxide groups and carboxylate O atoms, producing a two‐dimensional framework in the ab plane. Hydrogen bonds further extend the two‐dimensional sheets into a three‐dimensional supramolecular framework.  相似文献   

2.
The bulk cyclopolymerization of diepisulfide, 1,2:5,6‐diepithio‐3,4‐di‐O‐methyl‐1,2:5,6‐tetradeoxy‐D ‐mannitol ( 1 ), was studied using R4N+Br? (R = ? CH3, C2H5, C3H7, C4H9, and C7H15) and (C4H9)4N+X? (X = Cl, I, NO3, and ClO4) as the initiators. All the bulk polymerizations of 1 using quaternary tetraalkylammonium salts at 90 °C proceeded without gelation even at high conversion to produce gel‐free polymers consisting of 2,5‐anhydro‐1,5‐dithio‐D ‐glucitol (I) as the major cyclic repeating unit along with 1,5‐anhydro‐2,5‐dithio‐D ‐mannitol (II) and the desulfurized acyclic unit (III) as the minor units. The polymerization rate and molar fraction of the I unit increased with the increasing alkyl chain length of the tetraalkylammonium cation and the increasing nucleophilicity of the counteranion. Tetrabutylammonium chloride exhibited the highest catalytic activity and the highest stereoselectivity, that is, the thiosugar polymer with I:II:III = 81:15:4 and a number‐average molecular weight of 31.9 × 103 was obtained in 85% yield for a polymerization time of 0.5 h. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 965–970, 2002  相似文献   

3.
The 2‐aminobenzothiazole sulfonation intermediate 2,3‐dihydro‐1,3‐benzothiazol‐2‐iminium monohydrogen sulfate, C7H7N2S+·HSO4, (I), and the final product 2‐iminio‐2,3‐dihydro‐1,3‐benzothiazole‐6‐sulfonate, C7H6N2O3S2, (II), both have the endocyclic N atom protonated; compound (I) exists as an ion pair and (II) forms a zwitterion. Intermolecular N—H...O and O—H...O hydrogen bonds are seen in both structures, with bonding energy (calculated on the basis of density functional theory) ranging from 1.06 to 14.15 kcal mol−1. Hydrogen bonding in (I) and (II) creates DDDD and C(8)C(9)C(9) first‐level graph sets, respectively. Face‐to‐face stacking interactions are observed in both (I) and (II), but they are extremely weak.  相似文献   

4.
The structures of two ammonium salts of 3‐carboxy‐4‐hydroxybenzenesulfonic acid (5‐sulfosalicylic acid, 5‐SSA) have been determined at 200 K. In the 1:1 hydrated salt, ammonium 3‐carboxy‐4‐hydroxybenzenesulfonate monohydrate, NH4+·C7H5O6S·H2O, (I), the 5‐SSA monoanions give two types of head‐to‐tail laterally linked cyclic hydrogen‐bonding associations, both with graph‐set R44(20). The first involves both carboxylic acid O—H...Owater and water O—H...Osulfonate hydrogen bonds at one end, and ammonium N—H...Osulfonate and N—H...Ocarboxy hydrogen bonds at the other. The second association is centrosymmetric, with end linkages through water O—H...Osulfonate hydrogen bonds. These conjoined units form stacks down c and are extended into a three‐dimensional framework structure through N—H...O and water O—H...O hydrogen bonds to sulfonate O‐atom acceptors. Anhydrous triammonium 3‐carboxy‐4‐hydroxybenzenesulfonate 3‐carboxylato‐4‐hydroxybenzenesulfonate, 3NH4+·C7H4O6S2−·C7H5O6S, (II), is unusual, having both dianionic 5‐SSA2− and monoanionic 5‐SSA species. These are linked by a carboxylic acid O—H...O hydrogen bond and, together with the three ammonium cations (two on general sites and the third comprising two independent half‐cations lying on crystallographic twofold rotation axes), give a pseudo‐centrosymmetric asymmetric unit. Cation–anion hydrogen bonding within this layered unit involves a cyclic R33(8) association which, together with extensive peripheral N—H...O hydrogen bonding involving both sulfonate and carboxy/carboxylate acceptors, gives a three‐dimensional framework structure. This work further demonstrates the utility of the 5‐SSA monoanion for the generation of stable hydrogen‐bonded crystalline materials, and provides the structure of a dianionic 5‐SSA2− species of which there are only a few examples in the crystallographic literature.  相似文献   

5.
Reaction of [Au(DAPTA)(Cl)] with RaaiR’ in CH2Cl2 medium following ligand addition leads to [Au(DAPTA)(RaaiR’)](Cl) [DAPTA=diacetyl-1,3,5-triaza-7-phosphaadamantane, RaaiR’=p-R-C6H4-N=N- C3H2-NN-1-R’, (1—3), abbreviated as N,N’-chelator, where N(imidazole) and N(azo) represent N and N’, respectively; R=H (a), Me (b), Cl (c) and R’=Me (1), CH2CH3 (2), CH2Ph (3)]. The 1H NMR spectral measurements in D2O suggest methylene, CH2, in RaaiEt gives a complex AB type multiplet while in RaaiCH2Ph it shows AB type quartets. 13C NMR spectrum in D2O suggest the molecular skeleton. The 1H-1H COSY spectrum in D2O as well as contour peaks in the 1H-13C HMQC spectrum in D2O assign the solution structure.  相似文献   

6.
In the title monohydrated cocrystal, namely 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol iodide–1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol–water (1/1/1), C6H16N3O3+·I·C6H15N3O3·H2O, the neutral 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol (taci) molecule and the monoprotonated 1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol cation (Htaci+) both adopt a chair conformation, with the three O atoms in axial and the three N atoms in equatorial positions. The cation, but not the neutral taci unit, exhibits intramolecular O—H...O hydrogen bonding. The entire structure is stabilized by a complex three‐dimensional network of intermolecular hydrogen bonds. The neutral taci entities and the Htaci+ cations are each aligned into chains along [001]. In these chains, two O—H...N interactions generate a ten‐membered ring as the predominant structural motif. The rings consist of vicinal 2‐amino‐1‐hydroxyethylene units of neighbouring molecules, which are paired via centres of inversion. The chains are interconnected into undulating layers parallel to the ac plane, and the layers are further held together by O—H...N hydrogen bonds and additional interactions with the iodide counter‐anions and solvent water molecules.  相似文献   

7.
In the construction of coordination polymers, many factors can influence the formation of the final architectures, such as the nature of the metal centres, the organic ligands and the counter‐anions. In the coordination polymer poly[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ4O 1,O 1′:O 2,O 2′)[μ‐2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole‐κ2N 2:N 3]cadmium(II)], [Cd(C12H12N4)(C8H4O4)(H2O)]n or [Cd(immb)(1,2‐bdic)(H2O)]n , each CdII ion is seven‐coordinated by two N atoms from two symmetry‐related 2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole (immb) ligands, by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and by one water molecule, leading to a CdN2O5 distorted pentagonal bipyramidal coordination environment. The immb and 1,2‐bdic2− ligands bridge CdII ions and form a two‐dimensional network structure. O—H…O and N—H…O hydrogen bonds stabilize the structure. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviour and fluorescence properties of the title polymer have been investigated.  相似文献   

8.
The effect of cations in a reaction mixture for the preparation of the Preyssler‐Jeannin‐Pope type 30‐tungsto‐5‐phosphate [P5W30O110Na]14– is investigated. Reaction of phosphate and tungstate with a P/W ratio of ca. 3.9 in an acidic aqueous solution without cations selectively leads to the Dawson‐type 18‐tungsto‐2‐phosphate, [P2W18O62]6–. Amongst all the alkali cations, only Na+ allows formation of the Preyssler‐type polyanion [P5W30O110Na]14–, with an encapsulated Na+ ion, and the product yield can be improved by increasing Na+ amount. The presence of Li+ ions instead results in the Dawson‐type polyanion [P2W18O62]6–, whereas K+, Rb+, and Cs+ selectively result in the Keggin‐type polyanion [PW12O40]3–. An improved synthetic procedure for the Na+‐encapsulated Preyssler‐ion leading to a higher isolated yield is presented. Furthermore, addition of Ca2+ and Bi3+ compounds allows formation of the Ca2+‐ and Bi3+‐encapsulated Preyssler‐type polyanions, [P5W30O110Ca]13– and [P5W30O110Bi]12–, respectively. Furthermore, single‐crystal XRD structure of the Bi3+‐encapsulated Preyssler‐type polyanions, [P5W30O110Bi]12–, is presented for the first time.  相似文献   

9.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

10.
The title compound, C6H9N2O2+·Cl·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443].  相似文献   

11.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

12.
Yellow–orange tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) dihydrate, [Cd(C8HN4O2)2(H2O)4]·2H2O, (I), and yellow tetraaquabis(3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κN3)cadmium(II) 1,4‐dioxane solvate, [Cd(C8HN4O2)2(H2O)4]·C4H8O2, (II), contain centrosymmetric mononuclear Cd2+ coordination complex molecules in different conformations. Dark‐red poly[[decaaquabis(μ2‐3‐cyano‐4‐dicyanomethylene‐5‐oxo‐4,5‐dihydro‐1H‐pyrrol‐2‐olato‐κ2N:N′)bis(μ2‐3‐cyano‐4‐dicyanomethylene‐1H‐pyrrole‐2,5‐diolato‐κ2N:N′)tricadmium] hemihydrate], [Cd3(C8HN4O2)2(C8N4O2)2(H2O)10]·0.5H2O, (III), has a polymeric two‐dimensional structure, the building block of which includes two cadmium cations (one of them located on an inversion centre), and both singly and doubly charged anions. The cathodoluminescence spectra of the crystals are different and cover the wavelength range from UV to red, with emission peaks at 377 and 620 nm for (III), and at 583 and 580 nm for (I) and (II), respectively.  相似文献   

13.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

14.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

15.
The title CdII coordination polymer, [Cd(C10H8O4)(C12H12N6)0.5(H2O)]n, has been obtained by the hydrothermal method and studied by single‐crystal X‐ray diffraction, elemental analysis, thermogravimetric analysis, IR spectroscopy and fluorescence spectroscopy. The compound forms a novel three‐dimensional framework with 3,8‐connected three‐dimensional binodal {4.52}2{42.510.612.7.83} topology. An investigation of its photoluminescence properties shows that the compound exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   

16.
The addition of neutral (L = py, NEt3, NHEt2, NH2tBu) and anionic Lewis bases (X = OH, Br, N3, Me, NHBu , NHtBu, [FeCp(CO)2]) to aza‐closo‐dodecaboranes RNB11H11 ( 1 ) or to derivatives thereof with boron bound non‐hydrogen ligands yields nido‐clusters RNB11H11L or [RNB11H11X] or derivatives thereof, respectively, the non‐planar pentagonal aperture N—B4—B9—B8—B5 of which hosts a B8—B9 hydrogen bridge. The base is either bound to B8 ( 3 )or B4 ( 5 )or B2( 7 ). The structures of these adducts are concluded from 1H and 11B NMR including 2D‐NMR spectra, and in the case of MeNB11H11(NHEt2) (type 3 ) also by a crystal structure analysis. With two of the adducts MeNB11H11L (L = py, NHEt2), isomers of the type 3 , 5 , and 7 , and with two of the adducts, MeNB11H11(NH2tBu) and {MeNB11H11[FeCp(CO)2]}, isomers of the type 3 and 7 could be identified. The position of boron‐bound ligands during the addition of bases to 1 shows, that only vertices of the ortho‐belt of 1 are involved in the opening process. A mechanism is made plausible that starts by the attack of the base at B2 of 1 and opening of the N‐B2 bond, denoted as a [3c, 1c]‐collocation, to give 2 with an endo‐H atom, whose migration into an adjacent bridge position and opening of a second B—N bond, denoted as a [3c, 2c]‐translocation, gives 3 ; this isomer can be transformed into 7 by a sequence of [3c, 2c]‐translocations via the isomers 4 , 5 , and 6 . The chiral type 3 species MeNB11H11L with L = NHEt2, NH2tBu undergo a rapid enantiomerization, for whose mechanism the exchange of the bridging and the amine‐H atom has been made plausible.  相似文献   

17.
The complex catena‐poly[[dibromidocopper(II)]‐bis(μ‐2‐methyl‐2H‐tetrazol‐5‐amine)‐κ2N4:N52N5:N4], [CuBr2(C2H5N5)2]n, (I), and the isotypic chloride complex catena‐poly[[dichloridocopper(II)]‐bis(μ‐2‐methyl‐2H‐tetrazol‐5‐amine)‐κ2N4:N52N5:N4], [CuCl2(C2H5N5)2]n, (II), were investigated by X‐ray powder diffraction at room temperature. The crystal structure of (I) was solved by direct methods, while the Rietveld refinement of (II) started from the atomic coordinates of (I). In both structures, the Cu atoms lie on inversion centres, adopting a distorted octahedral coordination of two halogen atoms, two tetrazole N atoms and two 5‐amine group N atoms. Rather long Cu—Namine bonds allow consideration of the amine group as semi‐coordinated. The compounds are one‐dimensional coordination polymers, formed as a result of 2‐methyl‐2H‐tetrazol‐5‐amine ligands bridging via a tetrazole N atom and the amine N atom. In the polymeric chains, adjacent Cu atoms are connected by two such bridges.  相似文献   

18.
The three title compounds were obtained by reactions which mimic, with more extreme conditions, the in vivo metabolism of barbiturates. 1‐(2‐Cyclohex‐2‐enylpropionyl)‐3‐methylurea, C11H18N2O2, (I), and 2‐ethylpentanamide, C8H17NO, (III), both crystallize with two unique molecules in the asymmetric unit; in the case of (III), one unique molecule exhibits whole‐molecule disorder. 2‐Ethyl‐5‐methylhexanamide, C9H19NO, (II), crystallizes as a fully ordered molecule with Z′ = 1. In the crystal structures, three different hydrogen‐bonding motifs are observed: in (I) a combination of R22(4) and R22(8) motifs, and in (II) and (III) a combination of R42(8) and R22(8) motifs. In all three structures, one‐dimensional ribbons are formed by N—H...O hydrogen‐bonding interactions.  相似文献   

19.
The Rose Bengal‐sensitized photooxidations of the dipeptides l ‐tryptophyl‐l ‐phenylalanine (Trp‐Phe), l ‐tryptophyl‐l ‐tyrosine (Trp‐Tyr) and l ‐tryptophyl‐l ‐tryptophan (Trp‐Trp) have been studied in pH 7 water solution using static photolysis and time‐resolved methods. Kinetic results indicate that the tryptophan (Trp) moiety interacts with singlet molecular oxygen (O2(1Δg)) both through chemical reaction and through physical quenching, and that the photooxidations can be compared with those of equimolecular mixtures of the corresponding free amino acids, with minimum, if any, influence of the peptide bond on the chemical reaction. This is not a common behavior in other di‐ and polypeptides of photooxidizable amino acids. The ratio between chemical (kr) and overall (kt) rate constants for the interaction O2(1Δg)‐dipeptide indicates that Trp‐Phe and Trp‐Trp are good candidates to suffer photodynamic action, with krlkt values of 0.72 and 0.60, respectively (0.65 for free Trp). In the case of Trp‐Tyr, a lower krlkt value (0.18) has been found, likely as a result of the high component of physical deactivation of O2(1Δg) by the tyrosine moiety. The analysis of the photooxidation products shows that the main target for O2(1Δg) attack is the Trp group and suggests a much lower accumulation of kynurenine‐type products, as compared with free Trp. This is possibly because of the occurrence of another accepted alternative pathway of oxidation that gives rise to 3a‐oxidized hydrogenated pyrrolo[2,3‐b]indoles.  相似文献   

20.
Ammonium N‐acetyl‐l ‐threoninate, NH4+·C6H10NO4?, and methyl­ammonium N‐acetyl‐l ‐threoninate, CH6N+·­C6H10NO4?, crystallize in the orthorhombic P212121 and monoclinic P21 space groups, respectively. The two crystals present the same packing features consisting of infinite ribbons of screw‐related N‐acetyl‐l ‐threoninate anions linked together through pairs of hydrogen bonds. The cations interconnect neighbouring ribbons of anions involving all the nitrogen‐H atoms in three‐dimensional networks of hydrogen bonds. The hydrogen‐bond patterns include asymmetric `three‐centred' systems. In both structures, the Thr side chain is in the favoured (g?g+) conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号