首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new asymmetric approach to the erythrinan alkaloid system is described, which involves chiral base desymmetrisation of a ring fused imide and a 6-exo-trig radical cyclisation as the key steps.  相似文献   

2.
The asymmetric synthesis of methyl (E)-4-((1R,2S,3R)-3-amino-2-((E)-2-methoxycarbonyl-eten-1-yl)cyclohexyl)but-2-enoate 14 has been achieved from dimethyl (2E,7E)-nona-2,7-dienedioate 2. A key step is the asymmetric synthesis of 1-hydroxyoctahydro-1H-isochromene derivative 5 whose X-ray analysis corroborated the stereochemistry of the new stereocenters. The asymmetric synthesis of the isochromenyl acetate derivative 11 shows the potential of this methodology for fused cyclohexanic system heterocyclic synthesis.  相似文献   

3.
Aza variant of intramolecular catalytic, asymmetric nucleophile-catalyzed, aldol lactonization (NCAL) reaction has been explored to synthesize β-lactone fused nitrogen heterocycles as aza sugars’ precursors by employing achiral amino acids. The utility of these bicyclic β-lactones is presented by the formal synthesis of aza sugars, (3S,4R) and (3R,4S) 4-(hydroxymethyl)pyrrolidin-3-ol.  相似文献   

4.
The synthesis of the alkaloid jamtine and the antidepressant paroxetine have been addressed by a strategy involving asymmetric desymmetrisation of prochiral imides by a chiral lithium amide base. A short reaction sequence, starting with a cyclohexane fused succinimide, led to the structures originally reported for the alkaloid jamtine and its derived N-oxide. The structures synthesised are shown not to correspond with those originally reported. A second sequence involves desymmetrisation of a 4-arylglutarimide, and provides a short enantioselective synthesis of the drug substance paroxetine.  相似文献   

5.
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel–Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.

A stereodivergent synthesis of azepino[3,4,5-cd]-indoles bearing three stereogenic centers was established via synergistic dual-metal catalysis followed by acid-promoted epimerization, and up to all eight stereoisomers could be predictably achieved.  相似文献   

6.
A rotational isomeric shoreaketone (1), identified as a skeletal member of resveratrol tetramers, was isolated from three species of Dipterocarpaceaeous plants: Shorea uliginosa, Shorea hemsleyana, and Vateria indica. The structure was elucidated by spectroscopic analysis including NMR experiments and their absolute configurations determined based on circular dichroism data. Shoreaketone has 10 asymmetric carbons and a framework of fused heptacyclic ring system including a spiro ring and an α,β-unsaturated carbonyl group that has not been reported in any other natural product. NMR experiments using shoreaketone indicate the presence of two conformers due to restricted rotation of a C–C bond in solution. The complex stereochemistry is due to its skeleton, 10 asymmetric carbons, and a chiral axis. The conformations of rotational isomeric stilbenoid were studied by variable-temperature NMR, ROESY, a skeletal conversion. The coexistence of two conformers for shoreaketone (1) was confirmed to be 1a and 1b, in which the diaryl-dihydrobenzofuran moiety (unit 1B) is extended below or above the plane of the cyclopentane ring (unit 1A), respectively.  相似文献   

7.
All-carbon quaternary stereocenters are ubiquitous in natural products and significant in drug molecules. However, construction of all-carbon stereocenters is a challenging project due to their congested chemical environment. And, when vicinal all-carbon quaternary stereocenters are present in one molecule, they will dramatically increase its synthetic challenge. A chiral titanium promoted enantioselective photoenolization/Diels–Alder (PEDA) reaction allows largely stereohindered tetra-substituted dienophiles to interact with highly active photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing vicinal all-carbon quaternary centers in excellent enantiomeric excess through one-step operation. This newly developed enantioselective PEDA reaction will inspire other advances in asymmetric excited-state reactions, and could be used in the total synthesis of structurally related complex natural products or drug-like molecules for drug discovery.

An enantioselective PEDA reaction was developed to enable stereohindered dienophiles to interact with transient photoenolized hydroxy-o-quinodimethanes, delivering fused or spiro polycyclic rings bearing 2–3 vicinal all-carbon quaternary centers in good yield and excellent ee.  相似文献   

8.
Summary of main observation and conclusion A Pd-catalyzed asymmetric aromative[4+3]-cyclization reaction of amino-trimethylenemethanes(TMM,1d,ip3-oles)with fused 1-azadienes has been developed.This method enables access to the synthetically importance and biologically active benzofuran fused azepines and indeno-azepines in excellent efficiency and stereoselectivity(up to 95%yield,99%ee,>19:1 dr).  相似文献   

9.
The concurrent enhancement of short-circuit current (JSC) and open-circuit voltage (VOC) is a key problem in the preparation of efficient organic solar cells (OSCs). In this paper, we report efficient and stable OSCs based on an asymmetric non-fullerene acceptor (NFA) IPC-BEH-IC2F. The NFA consists of a weak electron-donor core dithienothiophen[3,2-b]-pyrrolobenzothiadiazole (BEH) and two kinds of strong electron-acceptor (A) units [9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) with a tricyclic fused system and 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC2F)]. For comparison, the symmetric NFAs IPC-BEH-IPC and IC2F-BEH-IC2F were characterised. The kind of flanking A unit significantly affects the light absorption features and electronic structures of the NFAs. The asymmetric IPC-BEH-IC2F has the highest extinction coefficient among the three NFAs owing to its strong dipole moment and highly crystalline feature. Its highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels lie between those of the IPC-BEH-IPC and IC2F-BEH-IC2F molecules. The IPC group also promotes molecular packing through the tricyclic π-conjugated system and achieves increased crystallinity compared to that of the IC2F group. Inverted-type photovoltaic devices based on p-type polymer:NFA blends with PBDB-T and PM6 polymers as p-type polymers were fabricated. Among all these devices, the PBDB-T:IPC-BEH-IC2F blend device displayed the best photovoltaic properties because the IPC unit provides balanced electronic and morphological characteristics. More importantly, the PBDB-T:IPC-BEH-IC2F-based device exhibited the best long-term stability owing to the strongly interacting IPC moiety and the densely packed PBDB-T:IPC-BEH-IC2F film. These results demonstrate that asymmetric structural modifications of NFAs are an effective way for simultaneously improving the photovoltaic performance and stability of OSCs.

A 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) moiety in asymmetric non-fullerene acceptors promotes the formation of a densely packed crystalline structure, enabling efficient and long-term stable organic solar cells.  相似文献   

10.
[reaction: see text] We have found the first example of high levels of asymmetric induction (97-74% ee) along with high diastereoselectivity (>99:1-64:36) in dipole-HOMO-/dipolarophile-LUMO-controlled asymmetric 1,3-dipolar cycloaddition reactions between fused azomethine imines and 3-acryloyl-2-oxazolidinone using a chiral BINIM-Ni(II) complex as a chiral Lewis acid catalyst.  相似文献   

11.
Intramolecular Diels-Alder approach to construct the fused AB ring of trinervitane has been demonstrated efficiently. The key intermediate for the Diels-Alder cyclization has been achieved following highly stereoselective Julia-Kocienski olefination, Sharpless epoxidation and Evan’s asymmetric alkylation as the key reactions.  相似文献   

12.
We synthesized the isomeric polyimides, 6FDA-m-DDS and 6FDA-p-DDS, and investigated the gas selectivity of the asymmetric polyimide membranes with an oriented surface skin layer. Particularly, we focused on the effect of the chemical structure of the polyimide on the molecular orientation. The asymmetric membranes with the oriented skin layer were prepared by a dry–wet phase inversion process at different shear stresses. The gas permeances of the asymmetric polyimide membranes were measured using a high vacuum apparatus with a Baratron absolute pressure gauge at 76 cmHg. The molecular orientation in the asymmetric polyimide membranes was measured using polarized ATR–FTIR spectroscopy. The gas selectivity of the asymmetric 6FDA-m-DDS membrane increased with an increased in the shear stress and were greater than that of the dense membrane. In contrast, the gas selectivities of the asymmetric 6FDA-p-DDS membrane did not depend on the shear stress and were similar to those of the dense membrane. We clarified that a parallel oriented surface formed on the asymmetric 6FDA-m-DDS membrane caused the enhanced gas selectivity of the membrane.  相似文献   

13.
Chiral aspects of benzimidazoles have been over-shadowed for a long time due to the large number of reports on benzimidazoles in the medical field in numerous categories of therapeutic agents. The vigorous research activity in chiral applications of benzimidazole derivatives started after bifunctional benzimidazoles made their appearance especially in the last 2–3 decades. Thus, chiral benzimidazoles form a comparatively young branch of chiral chemistry. The presence of pyridine and pyrrole type of nitrogens along with the fused benzene ring confer on this class of molecules, special properties including useful nucleophilicity, hydrogen bonding ability and a rigid backbone, all of which play decisive roles in proven chiral applications. The present review aims to cover the synthetic routes to access chiral benzimidazoles and their applications in a plethora of chiral fields including enantioselective organocatalysis, metal-based catalysis, asymmetric transformations involving benzimidazole-N-heterocyclic carbenes, kinetic resolution, benzimidazole-based macrocyclic hosts in chiral supramolecular chemistry and other miscellaneous chiral applications.  相似文献   

14.
Aetheramides A and B are very potent anti-HIV agents. An enantioselective synthesis of a MEM-protected aetheramide A derivative is described. The synthesis was accomplished in a convergent and stereoselective manner. The key reactions involved asymmetric dihydroxylation, asymmetric allylation, asymmetric syn-aldol reactions, and asymmetric hydrogenation.  相似文献   

15.
Regioselective asymmetric reduction of prochiral α,β-unsaturated ketones to optically active allylic alcohols was performed via hydrosilylation catalyzed by a rhodium(I) complex with (+)-BMPP, (+)-DIOP and (?)-DIOP as chiral ligands. The allylic alcohols with optical purity up to 69% e.e. were obtained in good yields. The extent of asymmetric induction was found to depend on the stereo-electronic matching of the chiral ligand, ketone and hydrosilane employed. In the asymmetric reduction of (R)-carvone, leading to carveol, the extent of asymmetric induction was found to depend markedly on the ligand/rhodium ratio. Either trans-(5R,1S)-carveol or cis-(5R,1R)-carveol was obtained with good stereoselectivity by using (?)-DIOP or (+)-DIOP as chiral ligand, and it turned out that the chiral center present in carvone had only a slight influence on the asymmetric induction by the chiral catalysts.  相似文献   

16.
We discovered asymmetric autocatalysis in the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde, where the product 5-pyrimidyl alkanol acts as a highly efficient asymmetric autocatalyst to afford more of itself (Soai reaction). Asymmetric autocatalysis proceeded quantitatively (>99% yield), affording itself as a near enantiomerically pure (>99.5% ee) product. An extremely low enantiomeric excess (ca. 0.00005% ee) can automultiply during three rounds of consecutive asymmetric autocatalysis to >99.5% ee by asymmetric amplification. Circularly polarized light, and inorganic and organic crystals, act as the origin of chirality to trigger asymmetric autocatalysis. Asymmetric autocatalysis has enormous power to recognize and amplify the chirality of hydrogen, carbon, oxygen, and nitrogen isotopomers. Moreover, absolute asymmetric synthesis, i.e., the formation of enantioenriched compounds without the intervention of any chiral factor, is realized by asymmetric autocatalysis. By using designed molecules based on 5-pyrimidyl alkanol, the intramolecular asymmetric control, self-replication, and improvement of chiral multifunctionalized large molecules has been developed by applying asymmetric autocatalysis.  相似文献   

17.
Ya-Li Chen 《Tetrahedron letters》2007,48(13):2421-2425
Palladium-catalyzed [2+2+2] cyclotrimerization reactions between benzyne and oxadisilole fused oxabicyclic alkenes afforded the exo-adducts. Deoxygenation with BF3·OMe2 yielded mono- and bis-oxadisilole fused benzo[b]triphenylene. The photophysical properties of the oxadisilole fused benzo[b]triphenylenes were characterized.  相似文献   

18.
The atom- and step-efficient synthesis of chiral fused tricyclic lactams from readily available ketoesters using cheap ammonium salts as the nitrogen source is reported. This ruthenium-catalyzed system operates through an efficient tandem dynamic kinetic asymmetric reductive amination (ARA)/lactamization and produces chiral fused tricyclic lactams in high yields with excellent diastereo- and enantioselectivity (up to >99 % ee, >20 : 1 dr and 98 % yield). The robust method was also applied to the concise synthesis of key intermediates in the synthesis of rivastigmine analogues and chiral N-heterocyclic carbene catalysts.  相似文献   

19.
1,3-Dienes derived from (R)-4-t-butyldimethylsilyloxy-2-cyclohexen-1-one react with activated dienophiles to form predominately (or sometimes exclusively) syn/endo products. These controlled [4+2] cycloadditions increase the asymmetric complexity from one asymmetric center in the starting material to five asymmetric centers in the products in a single step, and provide a powerful approach for the asymmetric synthesis of compounds containing the bicyclo[2.2.2]octanone carbon skeleton.  相似文献   

20.
A method for asymmetric and site selective annulations at the γ and γ′ positions of cyclic 2‐enones with α,β‐unsaturated aldehydes has been developed. The organocatalysed [3+3]‐annulations proceed with high levels of regio‐, diastereo‐, and enantioselectivity, affording a series of high value fused carbocycles. Further elaboration gave key lactones (both bridged and fused).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号