首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naturally occurring (1S,2R,3R,5R,7aR)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-hyacinthacine A6, 2] together with unnatural (1S,2R,3R,7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-7a-epi-hyacinthacine A1, 3] and (1S,2R,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-5,7a-diepi-hyacinthacine A6, 4] have been synthesized from a DALDP derivative [5, (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine], as the homochiral starting material. The synthetic process employed took advantages of Wittig methodology followed by internal lactamization, in the case of (+)-7a-epi-hyacinthacine A1 (3), and reductive amination for (+)-hyacinthacine A6 (2) and (+)-5,7a-diepi-hyacinthacine A6 (4).  相似文献   

2.
《Tetrahedron: Asymmetry》2004,15(9):1465-1469
(1R,2R,3S,5R,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine [(+)-3-epi-hyacinthacine A3] 1 and (1R,2R,3S,7aR)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine [(+)-3-epi-hyacinthacine A2] 2 have been synthesized by Wittig's methodology using aldehyde 6, prepared from (2R,3R,4R,5S)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl) pyrrolidine 3 (a partially protected DGDP), and the appropriated ylides, followed by cyclization through an internal reductive amination process of the resulting α,β-unsaturated ketone 7 and aldehyde 8, respectively, and total deprotection.  相似文献   

3.
(1R,2S,3S,5R,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine[(−)-3-epihyacinthacine A5, 1a] and (1S,2R,3R,5S 7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine[(+)-3-epihyacinthacine A5, 1b] have been synthesized either by Wittig's or Horner-Wadsworth-Emmond's (HWE's) methodology using aldehydes 4 and 9, both prepared from (2S,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (2, partially protected DADP), and the appropriate ylides, followed by cyclization through an internal reductive amination process of the resulting α,β-unsaturated ketones 5 and 10, respectively, and total deprotection.  相似文献   

4.
《Tetrahedron: Asymmetry》2007,18(18):2211-2217
(1R,2S,3R,5S,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine 10 [(+)-5-epihyacinthacine A5] and (1R,2S,3R,5S,7aS)-1,2-dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine 17 [ent-5-epihyacinthacine A4] have been synthesized by either Horner–Wadsworth–Emmons (HWE) or Wittig methodology using aldehydes 6 and 13, prepared from (2R,3S,4R,5R)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine 5 (partially protected DALDP) and (2R,3S,4R,5S)-3,4-dibenzyloxy-N-benzyloxycarbonyl-2,5-bis(hydroxymethyl)-2′-O-pivaloylpyrrolidine 12 (partially protected DGADP), respectively, and the appropriated ylide, followed by cyclization through an internal reductive amination process of the corresponding intermediate pyrrolidinic ketones 7 and 14 and subsequent deprotection.  相似文献   

5.
Tetsuya Sengoku 《Tetrahedron》2008,64(35):8052-8058
An enantiomerically and diastereomerically pure route has been developed for the first asymmetric synthesis of (1S,2R,3R,5R,7aR)- and (1S,2R,3R,5S,7aR)-1,2-dihydroxy-3,5-dihydroxymethylpyrrolizidine, hyacinthacine B1 and B2, featuring efficient and stereodefined elaboration via the asymmetric dihydroxylation (AD) of the functionalized homochiral pyrrolidine derivative prepared from (S)-(−)-2-pyrrolidone-5-carboxylic acid.  相似文献   

6.
Synthesis and structural confirmation of highly oxygenated pyrrolizidine alkaloids, hyacinthacines C2 [(1S,2R,3R,5R,7S,7aR)-3,5-hydroxymethyl-1,2,7-trihydroxypyrrolizidine], C3[(1S,2R,3R,5S,7R,7aR)-3,5-hydroxymethyl-1,2,7-trihydroxypyrrolizidine], and their C5-epimers were achieved on the basis of the highly divergent method employing (S)-(−)-2-pyrrolidone-5-carboxylic acid as the starting material.  相似文献   

7.
《Tetrahedron: Asymmetry》2001,12(13):1807-1809
The first synthesis of (+)-hyacinthacine A2 has been achieved in six steps from 2,3,5-tri-O-benzyl-d-arabinofuranose in an overall yield of 11%. The structure of this natural product was thus unambiguously established as (1R,2R,3R,7aR)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine.  相似文献   

8.
Two novel octulosonic acid derivatives with a 6,8-dioxabicyclo[3.2.1]octane skeleton that are major water-soluble phenolic compounds were found in the roots of Smallanthus sonchifolius. The structures of these compounds were determined to be (1R,2S,3S,4R,5S,7R)-4-hydroxy-7-hydroxymethyl-3-[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyloxy]-6,8-dioxabicyclo[3.2.1]octan-5-carboxylic acid (4-O-caffeoyl-2,7-anhydro-d-glycero-β-d-galacto-oct-2-ulopyranosonic acid) and (1R,2S,3R,4R,5S,7R)-2,4-dihydroxy-7-hydroxymethyl-2,3-bis[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyloxy]-6,8-dioxabicyclo[3.2.1]octan-5-carboxylic acid (4,5-di-O-caffeoyl-2,7-anhydro-d-glycero-β-d-galacto-oct-2-ulopyranosonic acid) by MS, NMR and CD spectral analyses.  相似文献   

9.
A novel and highly convenient process is described for the asymmetric synthesis of polyhydroxylated pyrrolizidine alkaloids, (+)-alexine [(1R,2R,3R,7S,7aS)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine] and (−)-7-epi-alexine [(1R,2R,3R,7R,7aS)-3-hydroxymethyl-1,2,7-trihydroxypyrrolizidine], as the potent glycosidase inhibitors by featuring the efficient and stereodefined elaboration of the functionalized pyrrolidine derivatives, which were, in turn, prepared via stereoselective manipulation of the homochiral allyl alcohol precursors derived from l-xylose.  相似文献   

10.
《Tetrahedron: Asymmetry》2014,25(3):252-257
The cyclocondensation reactions between l-α-amino acid phenylhydrazides and 2,3-O-isopropylidene-l-erythruronolactone in the presence of a catalytic amount of p-toluenesulfonic acid afforded diastereomerically pure (3S,6R,7R,7aS)-3-substituted-6,7-isopropylidenedioxy-1-phenylamino-dihydro-1H-pyrrolo[1,2-a]imidazole-2,5(3H,6H)-diones, which were converted by acidic hydrolysis with MeOH–HCl into their corresponding optically active (3S,6R,7R,7aS)-3-substituted-6,7-dihydroxy-1-phenylamino-dihydro-1H-pyrrolo[1,2-a]imidazole-2,5(3H,6H)-diones in good yields.  相似文献   

11.
A diastereoselective synthesis of two new swainsonine's analogues 1a and 1b with the piperidine ring fused to a phenyl nucleus at C6-C7, namely (1R, 2S, 10R, 10aR)-(+)-1,2,10-trihydroxy-1,2,3,5,10,10a-hexahydrobenzo[f] indolizine (1a) and (1S, 2R, 10R, 10aR)-(+)-1,2,10-trihydroxy-1, 2, 3, 5, 10, 10a-hexahydrobenzo[f] indolizine (1b), is described. Throughout this work, the effectiveness of the tricyclic indolizidine dione 5, readily available in three steps from the cheap l-glutamic acid, as an attractive platform for chemo- and stereodivergent transformations is illustrated. The key steps involved totally diastereoselective ketone reduction of compound 5 and catalytic cis-dihydroxylation of the unsaturated amide 10. The synthetic strategy also allowed for the diastereoselective synthesis of benzoanalogues of the 1,8a-di-epi-lentiginosine 3a ((1R, 2S, 10aR)-(+)-1,2-dihydroxy-1, 2, 3, 5, 10, 10a-hexahydrobenzo[f]indolizine) and 2,8a-di-epi-lentiginosine 3b ((1S, 2R, 10aR)-(+)-1,2-dihydroxy-1,2,3,5,10,10a-hexahydrobenzo[f]indolizine).  相似文献   

12.
《Mendeleev Communications》2022,32(4):537-539
The two novel conglomerates were obtained by crystallization of racemic (2'S,3aS,6aR)/(2'R,3aR,6aS) (glycoluril-1-yl)-3-methylbutanoic acid and (2'R,3aR,6aR)/(2'S,3aS,6aS) (4,6-dimethylglycoluril-1-yl)pentanoic acid synthesized by highly diastereoselective condensation of 4,5-dihydroxy- imidazolidin-2-ones with racemic ureido acids. The differences in the molecular geometry of synthesized racemates were studied by X-ray diffraction that showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna21 and P212121, respectively  相似文献   

13.
Enantiomerically pure (3S,7R,8aS)-3-phenyloctahydropyrrolo[1,2-a]pyrazine-7-ol, (3S,7R,8aS)-3-methyl octahydropyrrolo[1,2-a]pyrazine-7-ol, (3S,7R,8aS)-3-isopropyloctahydropyrrolo[1,2-a]pyrazine-7-ol and (3S,7R,8aS)-3-isobutyloctahydropyrrolo[1,2-a]pyrazine-7-ol 16d were synthesized via preparation of the corresponding cyclic amides from enantiomerically pure l-proline and hydroxyproline derivatives followed by reduction using sodium borohydride-iodine.  相似文献   

14.
A reaction of (S)-2-benzyl-2-(α-methylbenzyl)amino-1,3-propanediol (S)-4a and 2-chloroethyl chloroformate, and the subsequent addition of DBU gave (4RS)-4-benzyl-4-hydroxymethyl-3-(α-methylbenzyl)-2-oxazolidinone (4R)-5a (92% de) via a diastereoselective asymmetric desymmetrization process. Debenzylation of (4R)-5a using trifluoromethanesulfonic acid and anisole in MeNO2 gave (R)-4-benzyl-4-hydroxymethyl-2-oxazolidinone (R)-15a, which was converted into (R)-(α-hydroxymethyl)phenylalanine (7) in two steps. N-Boc-α-methylphenylalanine (8), cericlami0ne (9) and BIRT-377 (10) were also synthesized using these asymmetric desymmetrization and debenzylation.  相似文献   

15.
《Tetrahedron: Asymmetry》2005,16(23):3887-3891
Indium-mediated allylation of N-Cbz-l-prolinal 3, under Grignard conditions, was carried out with high yield and stereoselectivity (de = 90%) to afford intermediate (2S,1′R)-N-benzyloxycarbonyl-2-(1′-hydroxybut-3′-en-1′-yl)pyrrolidine 4, which was transformed in two steps into (1R,3R,7aS)-1-hydroxy-3-hydroxymethylpyrrolizidine 9. Commercial Cbz-l-proline was a source of functionalization and chirality.  相似文献   

16.
A strategy for the synthesis of the novel (6bR,7R,8S,9S,10S,10aR)-8-(benzyloxy)-7,9,10-trihydroxy-6b,7,8,9,10,10a-hexahydro-11H-benzo[a]carbazole-5,6-dione is reported. The key steps were the Michael addition of 2-hydroxy-1,4-naphthoquinone to 1-nitrocyclohexene or 3-O-benzyl-5,6-dideoxy-1,2-O-isopropylidene-6-nitro-α-d-xylo-hex-5-enefuranose and the diastereoselective intramolecular Henry reaction of 3-O-benzyl-5,6-dideoxy-5-C-(3′-hydroxy-1′,4′-naphthoquinon-2′-yl)-1,2-O-isopropylidene-6-nitro-α-d-glucofuranose to give the key (1S,2S,3S,4R,5R,6R)-3-(benzyloxy)-1,2,4-trihydroxy-5-(3′-hydroxy-1′,4′-naphthoquinon-2′-yl)-6-nitrocyclohexane. When 2-hydroxy-1,4-naphthoquinone was replaced by (1,4-dimethoxynaphthalen-2-yl)lithium, the novel (1R,2S,3S,4R,4aS,11bS)-2-(benzyloxy)-1,3,4-trihydroxy-1,2,3,4,4a,5-hexahydro-11bH-benzo[b]carbazole-6,11-dione was obtained.  相似文献   

17.
《Tetrahedron: Asymmetry》2001,12(12):1779-1784
Crude Pseudomonas cepacia lipase (Amano PS-30) is a suitable biocatalyst for the kinetic resolution of the 1,2-cis-disubstituted cyclopentanoid building block (3aR*,4R*,6aS*)-(±)-4-hydroxymethyl-3,3a,4,6a-tetrahydrocyclopenta[b]furan-2-one through enantioselective transesterification. Enantiomerically enriched acetic acid (3aS,4S,6aR)-(+)-2-oxo-3,3a,4,6a-tetrahydro-2H-cyclopenta[b]furan-4-yl methyl ester was utilized in a formal synthesis of the iridoids (+)-isoiridomyrmecin and (−)-teucriumlactone.  相似文献   

18.
《Tetrahedron: Asymmetry》2007,18(18):2218-2226
The trans-configured fosfomycin analogue, diethyl (1S,2S)-1,2-epoxy-3-hydroxypropylphosphonate, was synthesised by the intramolecular Williamson reaction of diethyl (1S,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate. The cis-analogue was obtained as O-ethyl or O,O-diethyl (1R,2S)-1,2-epoxy-3-hydroxypropylphosphonates, when (1R,2R)-1,3-dihydroxy-2-mesyloxypropylphosphonate or its 3-O-trityl derivative were used as starting materials, respectively. The intramolecular Williamson cyclisations of diethyl (1S,2R)- and (1R,2S)-1-benzyloxy-3-hydroxy-2-mesyloxypropylphosphonates led to diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, respectively, with the concomitant formation of diethyl (E)-1-benzyloxy-3-hydroxyprop-1-en-1-phosphonate. From diethyl (1S,2S)- and (1R,2S)-2,3-epoxy-1-benzyloxypropylphosphonates, enantiomerically pure diethyl (1S,2S)- and (1R,2S)-1,2-dihydroxypropylphosphonates were obtained by catalytic hydrogenation, while diethyl (1S,2S)- and (1R,2S)-3-acetamido-1,2-dihydroxypropylphosphonates were produced after epoxide ring opening with dibenzylamine, acetylation and hydrogenolysis.  相似文献   

19.
《Tetrahedron: Asymmetry》2007,18(15):1809-1827
The dipolar cycloaddition of (Z)-N-benzyl-(3-O-benzyl-1,2-O-isopropylidene-α-d-ribofuranos-5-ylidene)amine N-oxide to methyl acrylate gives a 53:16:26:5 diastereomeric mixture of isoxazolidine derivatives. The dipolar cycloaddition of the xylo analogue to methyl acrylate is more diastereoselective, producing a 44:13:43 mixture of only three diastereomers. The ribo-configured adducts have been converted (4 steps only) into the new (2R,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aR)-, (2S,6S,7S,8R,8aS)- and (2R,6S,7S,8R,8aS)-2,6,7,8-tetrahydroxyindolizidines. Similarly, the two xylo-configured major isoxazolidine derivatives were converted into the known derivatives (2R,6S,7R,8R,8aS)- and (2S,6S,7R,8R,8aR)-2,6,7,8-tetrahydroxyindolizidines. The six isomeric indolizidine derivatives obtained have been evaluated for their inhibiting activities towards 15 glycosidases. Only the (2R,6S,7S,8R,8aR)-configured isomer is a selective inhibitor of amyloglucosidases from Aspergillus niger (IC50 = 350 μM) and from Rhizopus mold (IC50 = 90 μM, Ki = 195 μM, non-competitive), the other indolizidines show very little inhibitory activity at 1 mM concentration.  相似文献   

20.
《Tetrahedron: Asymmetry》1998,9(11):1891-1897
The absolute conformation and configuration of diastereomeric amides (4A,B6A,B) of (1S,3R)-camphanic acid (lactone of 1-hydroxy-2,2,3-trimethylcyclopentan-1,3-dicarboxylic acid, (−)-camphanic acid 9) with α-arylethylamines 13 are deduced from 1H NMR data and MM2 calculations. The α-arylethyl group in diastereomers A and B adopt nearly opposite absolute conformations, stabilized by hydrogen bonding in the syn-oriented O–C(1)–C(6)–N–H unit, and repulsive interaction between the 1′C–Me group and the amide CO group. The absolute configuration (1′S) is assigned to the 4A6A diastereomers, and the (1′R)-configuration to the 4B6B diastereomers; this assignment is confirmed by the preparation of 4A and 5A from enantiomerically pure (1′S)-α-arylethylamines 1 and 2, respectively. These results also enabled the assignment of pro-R (HR) and pro-S (HS) protons in the benzyl derivative 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号