首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes [(C5Me5)Ir(η6-arene)][BF4]2 (arene = toluene, toluene-d8, t-butylbenzene, methoxybenzene, chlorobenzene, o-xylene, p-xylene, tetralin and phenol) were prepared from the arene and reduced with NaBH4 to the η5-cyclohexadienyl complexes. Attack was exo at the arene and, with one exception, never at the substituent. Toluene showed no site preference but t-butylbenzene was attacked preferentially para, and chlorobenzene, ortho. Methoxybenzene was attacked ipso as well as ortho, meta (predominant), and para, and phenol gave only the meta-isomer. p-Xylene gave one isomer and o-xylene and tetralin gave two. Further reduction occurred on reaction with stronger hydride reducers (e.g., sodium bis(methoxyethoxy)dihydroaluminate) to give mixtures of 1- and 2-substituted cyclohexa-1,3-diene complexes (t-Bu, 2- ( > 95%); Me, 1- (25%), 2- (75%); Cl, 1- ( > 95%); and OMe, 1- (33%), 2- (67%)). The p-xylene complex gave a mixture of the η4-1,4-dimethylcyclohexa-1,3- and 1,4-diene complexes. Reaction of the cyclohexadiene complexes with HCl gas gave the free substituted cyclohexenes and [(C5Me5Ir)2Cl4]. The product from t-butylbenzene was predominantly (92%) the 3-substituted cyclohexene; that isomer (65%) and the 1-isomer (34%) were formed from toluene and the 1- (34%) and the 4-isomer (58%) were formed from chlorobenzene. Phenol gave only cyclohexanone. Overall these reactions yield the cyclohexene from the substituted benzene by addition of two hydrides and two protons and the iridium can be recycled.  相似文献   

2.
Oxidation of (E)-3-aryl-2-cyanoprop-2-enethioamides with 32% H2O2 under mild conditions gave (E)-3-aryl-2-cyano-1-iminioprop-2-ene-1-sulfenates in 70–88% yields. Under the conditions of the Radziszewski reaction (H2O2, 10% aqueous KOH) or upon prolonged treatment with H2O2, (E)-3-aryl-2-cyanoprop-2-enethioamides underwent transformations leading to complex mixtures of oxidation products. In some cases, 3-aryloxirane-2,2-dicarboxamides were isolated from those mixtures in low yields (<20%). Treatment of 3-arylamino-2-cyanoprop-2-enethioamides with the system H2O2/KOH in ethanol afforded (arylaminomethylidene)malononitriles.  相似文献   

3.
High enantioselectivities (94-96% ee) were obtained for the inverse electron-demand 1,3-dipolar cycloadditions between cyclohexyl vinyl ether and 2-benzopyrylium-4-olate generated via Rh2(OAc)4-catalyzed decomposition of o-methoxycarbonyl-α-diazoacetophenone. The reactions were effectively catalyzed by Eu(OTf)3, Ho(OTf)3, or Gd(OTf)3 complexes (10 mol %) of chiral 2,6-bis[(4S,5S)-4,5-diphenyl-2-oxazolinyl]pyridine. The reactions with the other electron-rich dipolarophiles such as allyl alcohol, 2,3-dihydrofuran, and butyl-tert-butyldimethylsilylketene acetal showed moderate enanantioselectivities (60-73% ee). Good to high enantioselectivities (73-97% ee) were also obtained for the cycloadditions between 3-acyl-2-benzopyrylium-4-olates, generated from methyl 2-(2-diazo-1,3-dioxoalkyl)benzoates and butyl or cyclohexyl vinyl ethers, in the presence of binaphthyldiimine (BINIM)-Ni(II) complexes (10 mol %). Under similar conditions, the reaction between methyl 2-(2-diazo-1,3-dioxohexyl)benzoate and 2,3-dihydrofuran was highly endo-selective, and moderately enantioselective (70% ee). For the BINIM-Ni(II)-catalyzed reactions of cyclohexyl vinyl ether, the use of an epoxyindanone as the 3-acyl-2-benzopyrylium-4-olate precursor revealed that the chiral Lewis acid can function as a catalyst for asymmetric induction. The scope of the cyclic carbonyl ylides was extended to those generated from 1-diazo-2,5-pentanedione derivatives, which were reacted with butyl or TBS vinyl ether and catalyzed using the (4S,5S)-Pybox-4,5-Ph2-Lu(OTf)3 complex to give good levels of asymmetric inductions (75-84% ee).  相似文献   

4.
(R)-(+)-Cibenzoline (95% ee) was synthesized in two steps from (+)-2,2-diphenylcyclopropylmethanol 3a (98% ee), which was oxidized with IBX in DMSO, followed by treatment with ethylenediamine in the presence of I2 and K2CO3 in tBuOH. Compound (R)-(+)-3a (98% ee) was prepared by cyclopropanation of 3,3-diphenyl-2-propen-1-ol 1 with Et2Zn and CH2I2 in the presence of a catalytic amount of (S)-2-(methanesulfonyl)amino-1-(p-toluenesulfonyl)amino-3-phenylpropane 2, followed by esterification with 3,5-dinitorobenzoyl chloride, recrystallization, and hydrolysis.  相似文献   

5.
Sr4AlNbO8 was synthesized at 1500 °C in air. The crystal structure was initially determined from powder X-ray diffraction data, and later refined with combined X-ray and neutron diffraction data (P21/c; a=7.17592(2) Å, b=5.80261(2) Å, c=19.7408(1) Å; β=97.5470(1)°, V=814.869(3) Å3, Z=4, Rp/Rwp=10.04%/13.18% for X-ray data, 4.40%/5.67% for neutron data, and 7.71%/10.74% in total with χ2 of 3.76, 23 °C). The crystal structure is a new structure type and may be described as a three-dimensional polyhedral network resulting from the corner-sharing of NbO6 and Sr1O6 octahedra and AlO4 tetrahedra. Also, the other strontium atoms (Sr2, Sr3, and Sr4) occupy the larger cavities surrounded by oxygen atoms to form nine, eight, and 11 coordination, respectively. Considering that Sr, Al, and Nb atoms are crystallographically distinct in terms of interatomic distances and polyhedral coordination, Sr4AlNbO8 can be regarded as a stoichiometric compound.  相似文献   

6.
《Tetrahedron: Asymmetry》2000,11(15):3079-3090
Enantiomerically pure (R1,S2)- and (S1,S2)-2-amino alcohols can be easily synthesized by stereodivergent reduction of α′-(N-Boc)amino β-keto sulfoxides (easily synthesized from readily available N-Boc amino ester hydrochlorides) with DIBAH (de 82–92%) and DIBAH/ZnBr2 (de 80%), followed by hydrogenolysis of the C–S bond of the resulting hydroxy sulfoxides and final hydrolysis of the N-Boc protecting group.  相似文献   

7.
8.
The complex MeIr(CO)(PPh3)2(MeCO2CHCHCO2Me), synthesized from trans-MeIr(CO)(PPh3)2 and dimethyl maleate, crystallizes in the centrosymmetric monoclinic space group P2/n with a 13.997(5), b 17.878(5), c 15.709(4) Å, β 91.00(2)°, V 3930(2) Å3 and Z = 4. X-ray data (Mo-Kα, 2θ 4.5–45.0°) were collected with a Syntex P21 automated four-circle diffractometer; the structure was solved and converged with R 5.5% for all 5069 unique reflections and R 4.3% for those 4343 data with |Fo| > 3σ(|Fo|). The iridium(I) center has a distorted trigonal bipyramidal geometry with the Me and CO ligands occupying axial sites (Ir-Me(1) 2.159(8), IrCO 1.907(8) Å. The MeCO2CHCHCO2Me ligand is bonded in η2 fashion to the iridium, with its coordinated double bond parallel to the equatorial plane. Bonds to the equatorial ligands are IrP(1) 2.344(2), Ir-P(2) 2.376(2) and Ir-(center of olefin) 2.017 Å. The observed ligand configuration is different from that for MeIr(CO)(PPh3)2(MeCO2CCCO2Me) which has axial Me and PPh3 ligands in its thermodynamically stable isomer.  相似文献   

9.
Four new Schiff base functionalized 1,2,3-triazolylidene nickel complexes, [Ni-(L1NHC)2](PF6)2; 3, [Ni-(L2NHC)2](PF6)2; 4, [Ni-(L3NHC)](PF6)2; 7 and [Ni-(L4NHC)](PF6)2; 8, (where L1NHC = (E)-3-methyl-1-propyl-4-(2-(((2-(pyridin-2-yl)ethyl)imino)methyl)phenyl)-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 1, L2NHC = (E)-3-methyl-4-(2-((phenethylimino)methyl)phenyl)-1-propyl-1H-1,2,3-triazol-3-ium hexafluorophosphate(V), 2, L3NHC = 4,4′-(((1E)-(ethane-1,2-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 5, and L4NHC = 4,4′-(((1E)-(butane-1,4-diylbis(azanylylidene))bis(methanylylidene))bis(2,1-phenylene))bis(3-methyl-1-propyl-1H-1,2,3-triazol-3-ium) hexafluorophosphate(V), 6), were synthesised and characterised by a variety of spectroscopic methods. Square planar geometry was proposed for all the nickel complexes. The catalytic potential of the complexes was explored in the oxidation of styrene to benzaldehyde, using hydrogen peroxide as a green oxidant in the presence of acetonitrile at 80 °C. All complexes showed good catalytic activity with high selectivity to benzaldehyde. Complex 3 gave a conversion of 88% and a selectivity of 70% to benzaldehyde in 6 h. However, complexes 4 and 7–8 gave lower conversions of 48–74% but with higher (up to 90%) selectivity to benzaldehyde. Results from kinetics studies determined the activation energy for the catalytic oxidation reaction as 65 ± 3 kJ/mol, first order in catalyst and fractional order in the oxidant. Results from UV-visible and CV studies of the catalytic activity of the Ni-triazolylidene complexes on styrene oxidation did not indicate any clear possibility of generation of a Ni(II) to Ni(III) catalytic cycle.  相似文献   

10.
The isobaric heat capacity C p (T) of YbAl3(BO3)4 grown by spontaneous crystallization from solution (100 ? n) wt % (Bi2Mo3O12 + 2.5% B2O3 + 0.75% Li2MoO4) + n wt % YbAl3(BO3)4 is studied experimentally in the region of 344–1016 K. It is established that there are no extrema on the C p (T) dependence, and the obtained data can be described using the Berman-Brown polynomial. The temperature variations of enthalpy and entropy are calculated from the C p (T) dependence.  相似文献   

11.
Two new molybdenyl iodates, K2MoO2(IO3)4 (1) and β-KMoO3(IO3) (2), have been prepared from the reactions of MoO3 with KIO4 and NH4Cl at 180°C in aqueous media. The structure of 1 consists of molecular [MoO2(IO3)4]2− anions separated by K+ cations. The Mo(VI) centers are ligated by two cis-oxo ligands and four monodentate iodate anions. Both terminal and bridging oxygen atoms of the iodate anions form long ionic contacts with the K+ cations. β-KMoO3(IO3) (2) displays a two-dimensional layered structure constructed from 2[(MoO3(IO3)]1− anionic sheets separated by K+ cations. These sheets are built from one-dimensional chains formed from corner-sharing MoO6 octahedra that run along the b-axis that are linked together through bridging iodate groups. K+ cations separate the layers from one another and form long contacts with oxygen atoms from both the iodate anions and molybdenyl moieties. Crystallographic data: 1, monoclinic, space group C2/c, a=12.8973(9) Å, b=6.0587(4) Å, c=17.694(1) Å, β=102.451(1)°, Z=4, Mo, λ=0.71073, R(F)=2.64% for 97 parameters with 1584 reflections with I>2σ(I); 2, monoclinic, space group P21/n, a=7.4999(6) Å, b=7.4737(6) Å, c=10.5269(8) Å, β=109.023(1)°, Z=4, Mo, λ=0.71073, R(F)=2.73% for 83 parameters with 1334 reflections with I>2σ(I).  相似文献   

12.
《Tetrahedron: Asymmetry》2001,12(2):197-204
A series of alkyl-, halogen- and nitro-substituted salen ligands, 1, have been employed in the asymmetric cyclopropanation of styrene with ethyl diazoacetate by its ruthenium(II) complex with [RuCl2(p-cymene)]2 or RuCl2(PPh3)3 as precursors. The introduction of appropriate electron withdrawing groups in the salen ligands benefited the enantioselectivity of the reaction. Some additives, including O-donor, N-donor and P-donor ligands, were added to the reaction to improve the enantioselectivity and activity, and e.e.s of up to 80% were achieved. In the salen/[RuCl2(p-cymene)]2 system, the (1R,2S)-isomer was obtained in 80.2% e.e. by using the salen ligand 1f derived from 3,5-dibrominated salicylaldehyde with Et3N as additive. E.e.s of up to 81.3% for (1S,2R)-isomers were achieved by using the complex 2 synthesized from the nitro-substituted ligand 1m and RuCl2(PPh3)3. A possible mechanism was also discussed.  相似文献   

13.
A new compound, β-SrGaBO4, has been attained through solid phase transition from α-SrGaBO4 at high temperatures. Its crystal structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld method and the final refinement converged with Rp=11.42 % and Rwp=15.16 %. It has an orthorhombic P21212 space group with cell parameters a=15.3706(2) Å, b=8.9921(1) Å, c=5.9191(1) Å, and Z=8. The structure of β-SrGaBO4 is built up from Ga2BO8 units formed by two GaO4 tetrahedra and one BO3 triangle, and Sr2O12 units formed by two SrO7 groups. Tetrahedra [GaO4] are linked by shared O(3) and O(7) atoms to form infinite chains along the c axis.  相似文献   

14.
The interaction of a range of organic halides with (Cl3Si)2 or (Me3Si)2 in the presence of a variety of transition metal catalysts (very predominantly Pd0 or PdII complexes) have been examined. PhSiMe3 was formed from PhCl[m.y., 15%] (m.y. - maximum yield), PhBr (m.y., 92%, with [PdL2Br2] as catalyst (L - PPh3)), and (contrary to earlier reports) PhI (m.y. 51%, with [PdL2I2]). MeSiCl3 was formed from MeBr (m.y., 78% with [PdL4]) and MeI (m.y., 91% with [PdL4]), and EtSiCl3 from EtBr (m.y., 49%, with [PdL2“Br2]; L” - P(C6H4OMe-p)3) and EtI (m.y. 45%, with [PdL4]). Me4Si was satisfactorily formed from MeBr (m.y. 42%, with [PdL4]). Evidence was obtained for the formation of Me3SiCF3 from CF3I. Very poor yields of XC6H4CH2SiMe3 were obtained from XC6H4CH2Br (X - H orp-Me) (with X - H some PhSiMe3 was formed), butp-O2NC6H4CH2SiMe3 was formed in 48% yield fromp-O2NC6H4CH2Cl with [PdL“4] as catalyst. PhCOSiMe3 was formed from PhCOCl (m.y. 52% with [PdL2I2]. The nickel complex [NiL4] was moderately effective as a catalyst for reactions between (Cl3Si)2 and MeBr, EtBr, or PhCH2Br. The new complex [PdL2(SiCl3)2] was prepared by treatment of [PdL4] with (Cl3Si)2 or Cl3SiH, and shown to catalyse the reaction between MeBr and (Cl3Si)2.  相似文献   

15.
A series of new fluorine-containing poly(aryl ether ketone)s (8F-PEKEK(Ar); Ar: 2-2-bis(4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane (6FBA), 2,2-bis(4-hydroxyphenyl)propane (BA), 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane (3,4-BA) or 9,9-bis(4-hydroxyphenyl)fluorine (HF)) are synthesized and applied to the matrix of optical oxygen sensing using phosphorescence quenching of metalloporphyrins, platinum and palladium octaethylporphyrin, (PtOEP and PdOEP) by oxygen. The phosphorescence intensity of PtOEP and PdOEP in 8F-PEKEK(Ar) films decreased with increase of oxygen concentration. The ratio I0/I100 is used as a sensitivity of the sensing film, where I0 and I100 represent the detected phosphorescence intensities from a film exposed to 100% argon and 100% oxygen, respectively. For PtOEP in 8F-PEKEK(Ar) film, I0/I100 values are more than 20.0 and large Stern-Volmer constants more than 0.19%−1 are obtained compared with PtOEP in polystyrene film. For PdOEP in 8F-PEKEK(Ar) film, on the other hand, the large I0/I100 values more than 143 are obtained. However, the Stern-Volmer plots of PdOEP in 8F-PEKEK(Ar) films exhibit considerable linearity at lower oxygen concentration range between 0% and 20%. These results indicate that PtOEP and PdOEP films are useful optical oxygen sensor at the oxygen concentration range between 0% and 100% and between 0% and 20%, respectively. The response times of PtOEP and PdOEP dispersed in 8F-PEKEK(Ar) films are 5.6 and 3.0 s on going from argon to oxygen and 110.1 and 160.0 s from oxygen to argon, respectively.  相似文献   

16.
《Tetrahedron: Asymmetry》2006,17(13):1931-1936
Hydroboration of commercially available (+)-2-carene (96% ee) with either BH2Cl·SMe2 or BCl3/Me3SiH, provides chemically pure B-chlorobis(2-isocaranyl)borane (2-dIcr2BCl) whereas B-bromobis(2-isocaranyl)borane (2-dIcr2BBr) could only be prepared by Matteson’s BBr3/Me3SiH procedure in high chemical yield and purity. The enantiomeric excess achieved with 2-dIcr2BCl (78%), was significantly higher than those realized with the previously explored reagent, dIpc2BCl (41%), especially for meso-cyclohexene oxide. The new reagent, 2-dIcr2BBr also showed considerable improvements in enantiomeric excesses, in the cases of meso-cyclopentene oxide (67%) and meso-cis-2,3-butene oxide (78%) than those achieved with the previously reported reagent, dIpc2BBr (57% and 61%, respectively).  相似文献   

17.
《European Polymer Journal》1996,32(4):435-450
Microfiltration porous membranes (JH2O = 15,800 l/m2·atm·j, rp = 0,25 μm) and pervaporation dense membranes for ethanol deshydratation (Jtotal = 0,008 kg/h · m2 et α = 12,6) were prepared from polyhydroxybutyrate, poly(hydroxybutyrate-co-hydroxyvalerate) with 9% and 22% valerate contents. Different surface structures characterized with contact angle, surface energy and scanning electronic microscopy were correlated with filtration properties. Membranes were prepared after immersion coagulation or total evaporation from different ternary system P-S-NS compositions.  相似文献   

18.
Doped uranium brannerite phases (U1−xMxTi2O6; M=Ca2+, La3+ and Gd3+; x<0.5) were synthesized at 1400°C; the range of solid solution was found to vary depending on whether sintering took place in argon or air. Powder X-ray diffraction revealed that these phases crystallized to form monoclinic (C2/m) structures. In particular, the crystal structures of U0.74Ca0.26 Ti2O6 (1) (a=9.8008(2); b=3.7276(1); c=6.8745(1); β=118.38(1); V=220.97(1); Z=2; RP=7.3%; RB=4.6%) and U0.55La0.45Ti2O6 (2) (a=9.8002(7); b=3.7510(3); c=6.9990(5); β=118.37(4); V=226.40(3); Z=2; RP=4.5%; RB=2.9%) were refined from powder neutron diffraction data, revealing planes of corner and edge-sharing TiO6 octahedra separated by 8-fold coordinate U/M atoms. The oxygen sites within these structures were found to be fully occupied, confirming that the doping of lower valence M atoms occurs in conjunction with the oxidation of U(IV) to U(V).  相似文献   

19.
Non-stoichiometric FexWN2 (x∼0.72) was synthesized via leaching of Fe from layer-structured stoichiometric FeWN2 by soaking in sulfuric acid at ca. 50 °C. The synthesized products were characterized by powder X-ray diffraction (pXRD), secondary electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and magnetic measurements. Non-stoichiometric FexWN2 has the same symmetry unit cell as stoichiometric FeWN2 (P63/mmc), but the lattice parameters change: the a-axis expands by 0.16% while the c-axis decreases by 1.5%. Polycrystalline powder of FexWN2 showed similar morphologies as those of FeWN2. The calculated electronic structure of stoichiometric FeWN2 shows a more ionic-bonding character between Fe and N than that between W and N, which presumably allows for the partial Fe leaching from between the W-N prismatic layers. The magnetic susceptibility of FexWN2 smoothly decreases with increasing temperature from 3 to 300 K, unlike the broad maximum seen near 27 K in stoichiometric FeWN2.  相似文献   

20.
《Chemical physics letters》1987,133(4):359-362
The argon-PF3 complex has been prepared in a supersonic expansion of Ar (98%) and PF3 (2%). A Fourier-transform micro-wave spectrometer employing a Fabry-Pérot cavity was used to assign 28 rotational transitions. The rotational constants (MHz) and distortion constants (kHz) were A = 7332.468(10), B = 1023.055(2), C = 952.564(2), DJ = 3.53(1), DJK = 60.4(1) and d1 = −0.240(7). The argon atom is 3.953 Å (rc.m.) from the PF3 center of mass and rc.m. makes an angle of 70.3° with the C3 axis of the PF3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号