首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ab initio molecular orbital method is employed to study the structures and properties of chiral cyclic sulfur‐containing oxazaborolidine, as a catalyst, and its borane adducts. All the structures are optimized completely by means of the Hartree–Fock method at 6‐31g* basis sets. The catalyst is a twisted chair structure and reacts with borane to form four plausible catalyst–borane adducts. Borane–sulfur adducts may be formed, but they barely react with aromatic ketone to form catalyst–borane–ketone adducts, because they are repulsed greatly by the atoms arising from the chair rear of the catalyst with a twisted chair structure. Borane–N adduct has the largest formation energy and is predicted to react easily with aromatic ketone to form catalyst–borane–ketone adducts. The formation of the catalyst–borane adducts causes the BBH3 HBH3 bond lengths of the BH3 moiety to be increased and thus enhances the activity of the enantioselective catalytic reduction. The borane–N adduct is of great advantage to hydride transfer. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 245–251, 2000  相似文献   

2.
{Rh(xantphos)}‐based phosphido dimers form by P C activation of xantphos (4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene) in the presence of amine–boranes. These dimers are active dehydrocoupling catalysts, forming polymeric [H2BNMeH]n from H3B⋅NMeH2 and dimeric [H2BNMe2]2 from H3B⋅NMe2H at low catalyst loadings (0.1 mol %). Mechanistic investigations support a dimeric active species, suggesting that bimetallic catalysis may be possible in amine–borane dehydropolymerization.  相似文献   

3.
{Rh(xantphos)}‐based phosphido dimers form by P? C activation of xantphos (4,5‐bis(diphenylphosphino)‐9,9‐dimethylxanthene) in the presence of amine–boranes. These dimers are active dehydrocoupling catalysts, forming polymeric [H2BNMeH]n from H3B?NMeH2 and dimeric [H2BNMe2]2 from H3B?NMe2H at low catalyst loadings (0.1 mol %). Mechanistic investigations support a dimeric active species, suggesting that bimetallic catalysis may be possible in amine–borane dehydropolymerization.  相似文献   

4.
Electronic‐structure density functional theory calculations have been performed to construct the potential energy surface for H2 release from ammonia‐borane, with a novel bifunctional cationic ruthenium catalyst based on the sterically bulky β‐diketiminato ligand (Schreiber et al., ACS Catal. 2012, 2, 2505). The focus is on identifying both a suitable substitution pattern for ammonia‐borane optimized for chemical hydrogen storage and allowing for low‐energy dehydrogenation. The interaction of ammonia‐borane, and related substituted ammonia‐boranes, with a bifunctional η6‐arene ruthenium catalyst and associated variants is investigated for dehydrogenation. Interestingly, in a number of cases, hydride‐proton transfer from the substituted ammonia‐borane to the catalyst undergoes a barrier‐less process in the gas phase, with rapid formation of hydrogenated catalyst in the gas phase. Amongst the catalysts considered, N,N‐difluoro ammonia‐borane and N‐phenyl ammonia‐borane systems resulted in negative activation energy barriers. However, these types of ammonia‐boranes are inherently thermodynamically unstable and undergo barrierless decay in the gas phase. Apart from N,N‐difluoro ammonia‐borane, the interaction between different types of catalyst and ammonia borane was modeled in the solvent phase, revealing free‐energy barriers slightly higher than those in the gas phase. Amongst the various potential candidate Ru‐complexes screened, few are found to differ in terms of efficiency for the dehydrogenation (rate‐limiting) step. To model dehydrogenation more accurately, a selection of explicit protic solvent molecules was considered, with the goal of lowering energy barriers for H‐H recombination. It was found that primary (1°), 2°, and 3° alcohols are the most suitable to enhance reaction rate. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
Water-tolerant catalyst systems have been investigated for the cationic oligomerization of technical-grade p-methylstyrene and indene, for the production of industrially relevant aromatic resins. Systems based on 1-p-tolylethanol and 1-indanol (ROH) as initiators, in association with Cu(OTf)2, Bi(OTf)3 (OTf = triflate) and B(C6F5)3 as co-initiators/catalysts, show interesting productivities at 60 °C under air, with as low as 0.2-1.0 mol% catalyst loading. Most of the reactions are not controlled in terms of molecular weights of the products, except for indene oligomerization by the borane catalyst where experimental Mn values match well the theoretical values, as determined by the amount of added initiator over a 5-fold range (with 2-10 mol% vs. monomer). The ROH/tris(pentafluorophenyl)borane system offers the best compromise in terms of productivity and control over the molecular weights of the oligomers, which can be manipulated by the amount of initiator and reaction temperature.  相似文献   

6.
The storage of energy in a safe and environmentally benign way is one of the main challenges of today’s society. Ammonia–borane (AB=NH3BH3) has been proposed as a possible candidate for the chemical storage of hydrogen. However, the efficient release of hydrogen is still an active field of research. Herein, we present a metal‐free bis(borane) Lewis acid catalyst that promotes the evolution of up to 2.5 equivalents of H2 per AB molecule. The catalyst can be reused multiple times without loss of activity. The moderate temperature of 60 °C allows for controlling the supply of H2 on demand simply by heating and cooling. Mechanistic studies give preliminary insights into the kinetics and mechanism of the catalytic reaction.  相似文献   

7.
Described herein is an unprecedented access to BN‐polyaromatic compounds from 1,1′‐biphenylamines by sequential borane‐mediated C(sp2)?H borylation and intramolecular N‐demethylation. The conveniently in situ generated Piers’ borane from a borinic acid reacts with a series of N,N‐dimethyl‐1,1′‐biphenyl‐2‐amines in the presence of PhSiH3 to afford six‐membered amine‐borane adducts bearing a C(sp2)?B bond at the C2′‐position. These species undergo an intramolecular N‐demethylation with a B(C6F5)3 catalyst to provide BN‐isosteres of polyaromatics. According to computational studies, a stepwise ionic pathway is suggested. Photophysical characters of the resultant BN‐heteroarenes shown them to be distinctive from those of all‐carbon analogues.  相似文献   

8.
A novel bidentate amine-imine ligand precursor LH has been synthesized. This compound was reacted with ZnMe2 to generate the zinc methyl complex, LZnMe ( 4 ). The latter compound was fully characterized by NMR spectroscopy and single crystal X-ray diffraction. Compound 4 is a catalyst for the hydroboration and hydrosilylation of N-heterocycles, but with moderate catalytic activity. A more active catalyst, the zinc hydride complex LZnH ( 5 ) was synthesized by reacting the lithium salt LLi with ZnCl2 followed by sequential reaction with tBuOK and PhMeSiH2. Compound 5 catalyzes the selective 1,2-hydroboration of nitrogen heteroaromatics with decreased catalyst load and under mild conditions. Deuterium-labeling experiments and kinetic studies provided insight into the possible reaction mechanism. It is proposed that hydride transfer to the substrate proceeds directly from the reductant (borane) via a six-membered transition state facilitated by the catalyst, in which it plays an ambiphilic role, activating the substrate via coordination to the Lewis acidic zinc and enhancing the hydricity of the borane through coordination to the zinc hydride.  相似文献   

9.
Tris(pentafluorophenyl)borane [B(C6F5)3] has found to be an efficient catalyst for Friedel-Crafts reactions between activated arenes or heteroarenes and α-amidosulfones. The products undergo further Friedel-Crafts reactions with activated heteroarenes leading to the synthesis of unsymmetrical triarylmethanes. The present synthetic method displayed significant advantages such as low catalyst loading, mild reaction conditions, highly regioselective, high yield, and broad applicability to various substrates.  相似文献   

10.
Allene is cyclotrimerized under metal‐free conditions with the borane HB(C6F5)2 catalyst to selectively give 1,3,5‐trimethylenecyclohexane ( 3 a ). Three‐fold hydroboration of the 1,3,5‐cyclotrimer with Piers’ borane gives the all‐cis 1,3,5‐CH2B(C6F5)2 substituted cyclohexane product 14 .  相似文献   

11.
The ab initio molecular orbital method is employed to study the enantioselective reduction of acetophenone with borane catalyzed by thiszolidino[3,4-c]oxazaborolidine.Computation result shows that the controlling step for the reduction is the decomposition of the catalyst-alkoxyborane adduct and the reduction leads to S-alcohols.The transition atate of the hydride transfer from the borane moiety to the carbonyl carbon of acetophenone is a twisted chair structure with a B(2)-N(3)-BBH3-HBH3-CCo-OCO6-membered ring.  相似文献   

12.
This article discusses a new borane chain transfer reaction in olefin polymerization that uses trialkylboranes as a chain transfer agent and thus can be realized in conventional single site polymerization processes under mild conditions. Commercially available triethylborane (TEB) and synthesized methyl‐B‐9‐borabicyclononane (Me‐B‐9‐BBN) were engaged in metallocene/MAO [depleted of trimethylaluminum (TMA)]‐catalyzed ethylene (Cp2ZrCl2 and rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2 as a catalyst) and styrene (Cp*Ti(OMe)3 as catalyst) polymerizations. The two trialkylboranes were found—in most cases—able to initiate an effective chain transfer reaction, which resulted in hydroxyl (OH)‐terminated PE and s‐PS polymers after an oxidative workup process, suggesting the formation of the B‐polymer bond at the polymer chain end. However, chain transfer efficiencies were influenced substantially by the steric hindrances of both the substituent on the trialkylborane and that on the catalyst ligand. TEB was more effective than TMA in ethylene polymerization with Cp2ZrCl2/MAO, whereas it became less effective when the catalyst changed to rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2. Both TEB and Me‐B‐9‐BBN caused an efficient chain transfer in the Cp2ZrCl2/MAO‐catalyzed ethylene polymerization; nevertheless, Me‐B‐9‐BBN failed in vain with rac‐Me2Si(2‐Me‐4‐Ph)2ZrCl2/MAO. In the case of styrene polymerization with Cp*Ti(OMe)3/MAO, thanks to the large steric openness of the catalyst, TEB exhibited a high efficiency of chain transfer. Overall, trialkylboranes as chain transfer agents perform as well as B? H‐bearing borane derivatives, and are additionally advantaged by a much milder reaction condition, which further boosts their applicability in the preparation of borane‐terminated polyolefins. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3534–3541, 2010  相似文献   

13.
An isotactic chain end unsaturated polypropylene was prepared by the homogeneous metallocene catalyst Et(Ind)2ZrCl2 with MAO. Herein, the chain end unsaturated polypropylene proceeded the hydroboration reaction to prepare borane‐containing polypropylene. The borane‐containing polypropylene could be transformed to hydroxyl‐terminated polypropylene, PPOH. And then the polypropylene‐nylon 6 diblock copolymer, PP‐b‐NY6, was synthesized from telechelic PPOH by converting this prepolymer with toluene diisocyanate and using the resulting materials as macroactivators for anionic caprolactam polymerization. Meanwhile, this investigation used borane‐containing polypropylene and oxygen to produce free radicals at the chain end on the polypropylene. Experimental results indicate that the free radical is an effective initiator for the polymerization of methyl methacrylate to produce diblock PP‐b‐PMMA. The block copolymers are characterized by IR, NMR, and DSC analyses. The diblock copolymer is a good compatibilizer for polymer blends.  相似文献   

14.
采用一种简单的方法快速合成了Ru/Ce(OH)CO3纳米复合材料。基于TG,XRD,TEM,EDX,XPS和ICP等方法详细表征了所制备的催化剂,并用于催化氨硼烷水解制氢。表征结果表明尺寸大约为4.8 nm的Ru纳米粒子高度分散在Ce(OH)CO3纳米棒上。该催化剂对于氨硼烷水解制氢表现出优异的催化性能,在室温下其转化频率(TOF)达到389.6 molH2·molRu-1·min-1。而且该催化剂循环使用11次之后依然能够对氨硼烷催化产氢保持很高的活性。  相似文献   

15.
《Tetrahedron: Asymmetry》2006,17(23):3244-3247
An oxazaborolidine catalyst is readily prepared in situ at 25 °C in THF using (S)-α,α-diphenylpyrrolidinemethanol and borane generated from tetrabutylammonium borohydride/CH3I reagent system. The oxazaborolidine/BH3 reagent system prepared in this way is useful for the reduction of prochiral ketones to the corresponding alcohols with up to 99% ee.  相似文献   

16.
采用一种简单的方法快速合成了Ru/Ce(OH)CO3纳米复合材料。基于TG,XRD,TEM,EDX,XPS和ICP等方法详细表征了所制备的催化剂,并用于催化氨硼烷水解制氢。表征结果表明尺寸大约为4.8 nm的Ru纳米粒子高度分散在Ce(OH)CO3纳米棒上。该催化剂对于氨硼烷水解制氢表现出优异的催化性能,在室温下其转化频率(TOF)达到389.6 molH2·molRu-1·min-1。而且该催化剂循环使用11次之后依然能够对氨硼烷催化产氢保持很高的活性。  相似文献   

17.
Propene was polymerized with methylaluminoxane (MAO) and cationic activated rac-dimethylsilylene-2-methylbenz[e]indenylzirconocene [ MBI-Cl 2] and [ MBI-Me 2]. For cationic activation of the MBI-Me 2 system tris(pentafluorophenyl)borane [I], N,N-dimethylanilinium tetra(pentafluorophenyl)borate [III] were used. The MAO-activated dimethyl complex showed higher activity with respect to the dichloride system using high catalyst concentrations and [Al]/[Zr] ratios. Most effective cationic activator for MBI-Me 2 was N,N-dimethylanilinium tetra(pentafluorophenyl)borate [II] in combination with Al(i-Bu3). Using tris(pentafluorophenyl)borane [I] at different polymerization conditions or N,N-dimethylanilinium tetra(pentafluorophenyl)borate [II] in combination with Al(Et)3 no propene polymerization was observed due to the occurrence of reduction of the catalytically active site.  相似文献   

18.
The reduction of C?O groups with silanes catalyzed by electron‐deficient boranes follows a counterintuitive mechanism in which the Si? H bond is activated by the boron Lewis acid prior to nucleophilic attack of the carbonyl oxygen atom at the silicon atom. The borohydride thus formed is the actual reductant. These steps were elucidated by using a silicon‐stereogenic silane, but applying the same technique to the related reduction of C?N groups was inconclusive due to racemization of the silicon atom. The present investigation now proves by the deliberate combination of our axially chiral borane catalyst and axially chiral silane reagents (in both enantiomeric forms) that the mechanisms of these hydrosilylations are essentially identical. Unmistakable stereochemical outcomes for the borane/silane pairs show that both participate in the enantioselectivity‐determining hydride‐transfer step. These experiments became possible after the discovery that our axially chiral C6F5‐substituted borane induces appreciable levels of enantioinduction in the imine hydrosilylation.  相似文献   

19.
Tris(pentafluorophenyl)borane [B(C6F5)3] has been used as an efficient catalyst for reductive alkylation of alkoxy benzenes using aldehydes as an alkylating agent in the presence of polymethylhydrosiloxane (PMHS). Various alkylated trimethoxybenzene derivatives have been prepared in good to high yields. In addition, B(C6F5)3 was also used as a catalyst for the reaction of electron-rich arenes with aldehydes to obtain triarylmethanes. The use of reductive alkylation protocol for the synthesis of an isochroman and tetrahydroisoquinoline derivatives has also been demonstrated.  相似文献   

20.
Ammonia–borane (AB) is a promising chemical hydrogen‐storage material. However, the development of real‐time, efficient, controllable, and safe methods for hydrogen release under mild conditions is a challenge in the large‐scale use of hydrogen as a long‐term solution for future energy security. A new class of low‐cost catalytic system is presented that uses nanostructured Ni2P as catalyst, which exhibits excellent catalytic activity and high sustainability toward hydrolysis of ammonia–borane with the initial turnover frequency of 40.4 mol(H2) mol(Ni2P)?1 min?1 under air atmosphere and at ambient temperature. This value is higher than those reported for noble‐metal‐free catalysts, and the obtained Arrhenius activation energy (Ea=44.6 kJ mol?1) for the hydrolysis reaction is comparable to Ru‐based bimetallic catalysts. A clearly mechanistic analysis of the hydrolytic reaction of AB based on experimental results and a density functional theory calculation is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号